OCR Core Maths 2

Past paper questions Trigonometry

Edited by K V Kumaran

Email: kvkumaran@gmail.com

Phone: 07961319548

Trigonometry

• We define

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}.$$

This identity is very useful in solving equations like $\sin \theta - 2 \cos \theta = 0$ which yields $\tan \theta = 2$. The solutions of this in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ are $\underline{\theta = 63.4^{\circ}}$ and $\underline{\theta = 243.4^{\circ}}$ to one decimal place.

• Know the following (or better yet, learn a couple and be able to derive the rest, quickly, from your knowledge of the trigonometric functions):

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\bar{1}$	$\bar{0}$	undefined
180°	0	-1	0

- Be able to sketch $\sin \theta$, $\cos \theta$ and $\tan \theta$ in both degrees and radians.
- By considering a right angled triangle (or a point on the unit circle) we can derive the important result $\sin^2\theta + \cos^2\theta \equiv 1$. This is useful in solving certain trigonometric equations. Worked example; solve $1 = 2\cos^2\theta + \sin\theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.

$$1 = 2\cos^{2}\theta + \sin\theta$$

$$1 = 2(1 - \sin^{2}\theta) + \sin\theta$$
 get rid of $\cos^{2}\theta$,
$$0 = 1 - 2\sin^{2}\theta + \sin\theta$$
 quadratic in $\sin\theta$,
$$0 = 2\sin^{2}\theta - \sin\theta - 1$$
 factorise as normal,
$$0 = (2\sin\theta + 1)(\sin\theta - 1).$$

So we just solve $\sin \theta = -\frac{1}{2}$ and $\sin \theta = 1$. Therefore $\underline{\theta = 210^{\circ}}$ or $\underline{\theta = 330^{\circ}}$ or $\underline{\theta = 90^{\circ}}$.

• The above relation is also useful in converting between the different trigonometric functions. For example if $\cos \theta = \frac{6}{7}$ then, to find $\sin \theta$, do **not** use " \cos^{-1} " on your calculator and then " \sin " the answer. Instead

$$\sin^2 \theta + \cos^2 \theta = 1,$$

 $\sin^2 \theta + \frac{36}{49} = 1,$
 $\sin \theta = \pm \sqrt{\frac{13}{49}} = \pm \frac{\sqrt{13}}{7}.$

Without further information you must keep both the positive and negative solution.

• If a question tells you that the angle is 'acute', 'obtuse' or 'reflex' then you must visualise the appropriate graph and interpret. For example given that $\sin \theta = \frac{1}{3}$ and that θ is obtuse, find the value of $\cos \theta$. By the argument above you will find that

$$\cos\theta = \pm \frac{\sqrt{8}}{3} = \pm \frac{2\sqrt{2}}{3}.$$

However, given an obtuse angle (90° < θ < 180°) the cosine graph is negative, so the final answer should be $\cos \theta = -\frac{2\sqrt{2}}{3}$.

• You must be careful when you see things like $2 \tan x \sin x = \tan x$. It is SO tempting to divide both sides by $\tan x$ to yield $2 \sin x = 1$. But you must bring everything to one side and factorise;

$$2\tan x \sin x - \tan x = 0 \qquad \Rightarrow \qquad \tan x (2\sin x - 1) = 0.$$

The full set of solutions can then be by solving $\tan x = 0$ and $2\sin x - 1 = 0$. [It is completely analogous to $x^2 = x$. If we divide by x we find x = 1, but we know this has missed the solution x = 0. However when we factorise we find x(x - 1) = 0 and both solutions are found.]

• Given a trigonometric equation it is always best first to isolate the trigonometric function on its own; for example

$$9\cos(\dots) + 2 = 7$$
 \Rightarrow $\cos(\dots) = \frac{5}{9}$.

• For complicated trigonometric equations where you are not just 'cos'ing, 'sin'ing or 'tan'ing a single variable (x, θ, t) or the like, it is often easiest to make a substitution.

For example to solve $\cos(2x+30) = \frac{1}{4}$ in the range $0^{\circ} \leqslant x \leqslant 360^{\circ}$ the desired substitution is clearly u = 2x + 30, but you **must** remember to also convert the range also (many students forget this) so:

$$\cos(2x+30) = \frac{1}{4} \qquad 0^{\circ} \leqslant x \leqslant 360^{\circ},$$

$$\cos u = \frac{1}{4} \qquad 30^{\circ} \leqslant u \leqslant 750^{\circ},$$

$$u = \dots^{\circ}, \dots^{\circ}, \dots^{\circ}, \dots^{\circ}.$$

However, we don't want solutions in u, so we need to use $x = \frac{u-30}{2}$ on each u solution to get

$$x = \dots^{\circ}, \dots^{\circ}, \dots^{\circ}, \dots^{\circ}.$$

Sine & Cosine Rules

- The sine rule states for any triangle $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.
- The cosine rule states that $a^2 = b^2 + c^2 2bc \cos A$. Practice both sine and cosine rules on page 293.
- By considering half of a general parallelogram we can show that the area of any triangle is given by $A = \frac{1}{2}ab\sin C$.
- You must be good at bearing problems which result in triangles. Remember to draw lots of North lines and remember also that they are all parallel; therefore you can use Corresponding, Alternate and Allied angle theorems...revise your GCSE notes! Bearings are measured clockwise from North and must contain three digits. For example

$$12.2^{\circ} \Rightarrow 012.2^{\circ}.$$

In the diagram, ABCD is a quadrilateral in which AD is parallel to BC. It is given that AB = 9, BC = 6, CA = 5 and CD = 15.

- (i) Show that $\cos BCA = -\frac{1}{3}$, and hence find the value of $\sin BCA$. [4]
- (ii) Find the angle ADC correct to the nearest 0.1° . [4]

Q4 June2005

2.

(a) (i) Write down the exact values of $\cos \frac{1}{6}\pi$ and $\tan \frac{1}{3}\pi$ (where the angles are in radians). Hence verify that $x = \frac{1}{6}\pi$ is a solution of the equation

$$2\cos x = \tan 2x.$$
 [3]

(ii) Sketch, on a single diagram, the graphs of $y = 2\cos x$ and $y = \tan 2x$, for x (radians) such that $0 \le x \le \pi$. Hence state, in terms of π , the other values of x between 0 and π satisfying the equation

$$2\cos x = \tan 2x. \tag{4}$$

- (b) (i) Use the trapezium rule, with 3 strips, to find an approximate value for the area of the region bounded by the curve $y = \tan x$, the x-axis, and the lines x = 0.1 and x = 0.4. (Values of x are in radians.)
 - (ii) State with a reason whether this approximation is an underestimate or an overestimate. [1]

Q9 June2005

3.

Triangle ABC has AB = 10 cm, BC = 7 cm and angle $B = 80^{\circ}$. Calculate

- (i) the area of the triangle, [2]
- (ii) the length of CA, [2]
- (iii) the size of angle C.

Q2 Jan 2006

(i) Sketch, on a single diagram showing values of x from -180° to $+180^{\circ}$, the graphs of $y = \tan x$ and $y = 4\cos x$.

The equation

$$\tan x = 4\cos x$$

has two roots in the interval $-180^{\circ} \le x \le 180^{\circ}$. These are denoted by α and β , where $\alpha < \beta$.

(ii) Show α and β on your sketch, and express β in terms of α .

[3]

(iii) Show that the equation $\tan x = 4\cos x$ may be written as

$$4\sin^2 x + \sin x - 4 = 0$$
.

Hence find the value of $\beta - \alpha$, correct to the nearest degree.

[6]

Q9 Jan 2006

5.

Solve each of the following equations, for $0^{\circ} \le x \le 180^{\circ}$.

(i)
$$2\sin^2 x = 1 + \cos x$$
. [4]

$$\sin 2x = -\cos 2x. \tag{4}$$

Q5 June 2006

6.

In a triangle ABC, $AB = 5\sqrt{2}$ cm, BC = 8 cm and angle $B = 60^{\circ}$.

- (i) Find the exact area of the triangle, giving your answer as simply as possible. [3]
- (ii) Find the length of AC, correct to 3 significant figures.

Q4 Jan 2007

[3]

7.

- (i) (a) Sketch the graph of $y = 2\cos x$ for values of x such that $0^{\circ} \le x \le 360^{\circ}$, indicating the coordinates of any points where the curve meets the axes. [2]
 - **(b)** Solve the equation $2\cos x = 0.8$, giving all values of x between 0° and 360° .
- (ii) Solve the equation $2\cos x = \sin x$, giving all values of x between -180° and 180° . [3]

Q7 Jan 2007

(i) Show that the equation

$$3\cos^2\theta = \sin\theta + 1$$

can be expressed in the form

$$3\sin^2\theta + \sin\theta - 2 = 0.$$
 [2]

(ii) Hence solve the equation

$$3\cos^2\theta = \sin\theta + 1,$$

giving all values of θ between 0° and 360° .

[5]

Q5 June 2007

9.

In the diagram, angle $BDC = 50^{\circ}$ and angle $BCD = 62^{\circ}$. It is given that AB = 10 cm, AD = 20 cm and BC = 16 cm.

(i) Find the length of BD.

(ii) Find angle BAD. [3]

Q4 Jan 2008

[2]

(i)

Fig. 1 shows the curve $y = 2 \sin x$ for values of x such that $-180^{\circ} \le x \le 180^{\circ}$. State the coordinates of the maximum and minimum points on this part of the curve. [2]

(ii)

Fig. 2 shows the curve $y = 2 \sin x$ and the line y = k. The smallest positive solution of the equation $2 \sin x = k$ is denoted by α . State, in terms of α , and in the range $-180^{\circ} \le x \le 180^{\circ}$,

(a) another solution of the equation
$$2 \sin x = k$$
, [1]

(b) one solution of the equation
$$2 \sin x = -k$$
. [1]

(iii) Find the x-coordinates of the points where the curve $y = 2 \sin x$ intersects the curve $y = 2 - 3 \cos^2 x$, for values of x such that $-180^\circ \le x \le 180^\circ$. [6]

Q9 Jan 2008

In the diagram, a lifeboat station is at point A. A distress call is received and the lifeboat travels 15 km on a bearing of 030° to point B. A second call is received and the lifeboat then travels 27 km on a bearing of 110° to arrive at point C. The lifeboat then travels back to the station at A.

- (i) Show that angle ABC is 100° . [1]
- (ii) Find the distance that the lifeboat has to travel to get from C back to A. [2]
- (iii) Find the bearing on which the lifeboat has to travel to get from C to A. [4]

Q6 June 2008

12.

(a) (i) Show that the equation

$$2\sin x \tan x - 5 = \cos x$$

can be expressed in the form

$$3\cos^2 x + 5\cos x - 2 = 0.$$
 [3]

(ii) Hence solve the equation

$$2\sin x \tan x - 5 = \cos x,$$

giving all values of x, in radians, for $0 \le x \le 2\pi$. [4]

Q9 June 2008

Some walkers see a tower, T, in the distance and want to know how far away it is. They take a bearing from a point A and then walk for 50 m in a straight line before taking another bearing from a point B. They find that angle TAB is 70° and angle TBA is 107° (see diagram).

- (i) Find the distance of the tower from A. [2]
- (ii) They continue walking in the same direction for another $100 \,\mathrm{m}$ to a point C, so that AC is $150 \,\mathrm{m}$. What is the distance of the tower from C?
- (iii) Find the shortest distance of the walkers from the tower as they walk from A to C. [2]

14.

(i) The polynomial f(x) is defined by

$$f(x) = x^3 - x^2 - 3x + 3.$$

Show that x = 1 is a root of the equation f(x) = 0, and hence find the other two roots. [6]

(ii) Hence solve the equation

$$\tan^3 x - \tan^2 x - 3\tan x + 3 = 0$$

for $0 \le x \le 2\pi$. Give each solution for *x* in an exact form.

Q9 Jan 2009

15.

The lengths of the three sides of a triangle are 6.4 cm, 7.0 cm and 11.3 cm.

(i) Find the largest angle in the triangle.

[3]

[6]

(ii) Find the area of the triangle.

[2]

Q1 June 2009

Solve each of the following equations for $0^{\circ} \le x \le 180^{\circ}$.

(i)
$$\sin 2x = 0.5$$

(ii)
$$2\sin^2 x = 2 - \sqrt{3}\cos x$$
 [5]

Q5 June 2009

17.

(i) Show that the equation

$$2\sin^2 x = 5\cos x - 1$$

can be expressed in the form

$$2\cos^2 x + 5\cos x - 3 = 0.$$
 [2]

(ii) Hence solve the equation

$$2\sin^2 x = 5\cos x - 1,$$

giving all values of x between 0° and 360° . [4]

Q1 Jan 2010

18.

(i) Show that
$$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \tan^2 x - 1$$
. [2]

(ii) Hence solve the equation

$$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = 5 - \tan x,$$

for
$$0^{\circ} \le x \le 360^{\circ}$$
. [6]

Q7 June 2010

19.

Solve each of the following equations for $0^{\circ} \le x \le 180^{\circ}$.

(i)
$$3 \tan 2x = 1$$

(ii)
$$3\cos^2 x + 2\sin x - 3 = 0$$
 [5]

Q7 Jan 2011

The diagram shows triangle ABC, with AB = 9 cm, AC = 17 cm and angle $BAC = 40^{\circ}$.

(i) Find the length of BC. [2]

- (ii) Find the area of triangle ABC. [2]
- (iii) D is the point on AC such that angle $BDA = 63^{\circ}$. Find the length of BD. [3]

Q1 June 2011

*2*1.

(a)

The diagram shows part of the curve $y = \cos 2x$, where x is in radians. The point A is the minimum point of this part of the curve.

- (i) State the period of $y = \cos 2x$. [1]
- (ii) State the coordinates of A. [2]
- (iii) Solve the inequality $\cos 2x \le 0.5$ for $0 \le x \le \pi$, giving your answers exactly. [4]
- (b) Solve the equation $\cos 2x = \sqrt{3} \sin 2x$ for $0 \le x \le \pi$, giving your answers exactly. [4]

Q9 June 2011

The diagram shows two points A and B on a straight coastline, with A being 2.4km due north of B. A stationary ship is at point C, on a bearing of 040° and at a distance of 2 km from B.

- (i) Find the distance AC, giving your answer correct to 3 significant figures. [2]
- (ii) Find the bearing of C from A. [3]
- (iii) Find the shortest distance from the ship to the coastline. [2]

Q4 Jan 2012

23.

- (i) Sketch the graph of y = tan(½x) for -2π≤x≤2π on the axes provided.
 On the same axes, sketch the graph of y = 3cos(½x) for -2π≤x≤2π, indicating the point of intersection with the y-axis.
- (ii) Show that the equation $\tan(\frac{1}{2}x) = 3\cos(\frac{1}{2}x)$ can be expressed in the form

$$3\sin^2(\frac{1}{2}x) + \sin(\frac{1}{2}x) - 3 = 0.$$

Hence solve the equation $\tan(\frac{1}{2}x) = 3\cos(\frac{1}{2}x)$ for $-2\pi \le x \le 2\pi$.

Q9 Jan 2012

[6]

24.

Solve the equation

$$4\cos^2 x + 7\sin x - 7 = 0,$$

giving all values of x between 0° and 360° .

Q4 June 2012

[6]

- (a) (i) Given that α is the acute angle such that $\tan \alpha = \frac{2}{5}$, find the exact value of $\cos \alpha$. [2]
 - (ii) Given that β is the obtuse angle such that $\sin \beta = \frac{3}{7}$, find the exact value of $\cos \beta$. [3]

(b)

The diagram shows a triangle ABC with $AC = 6 \,\mathrm{cm}$, $BC = 8 \,\mathrm{cm}$, angle $BAC = 60^{\circ}$ and angle $ABC = \gamma$. Find the exact value of $\sin \gamma$, simplifying your answer.

Q7 June 2012

26.

The diagram shows triangle ABC, with AC = 14 cm, BC = 10 cm and angle $ABC = 63^{\circ}$.

(ii) Find the length of AB. [2]

Q1 Jan 2013

27.

(i) Show that the equation $2 \sin x = \frac{4 \cos x - 1}{\tan x}$ can be expressed in the form

$$6\cos^2 x - \cos x - 2 = 0.$$
 [3]

(ii) Hence solve the equation $2\sin x = \frac{4\cos x - 1}{\tan x}$, giving all values of x between 0° and 360°. [4]

Q5 Jan 2013

Solve each of the following equations, for $0^{\circ} \le x \le 360^{\circ}$.

(i)
$$\sin \frac{1}{2}x = 0.8$$

(ii)
$$\sin x = 3\cos x$$
 [3]

Q2 June 2013

29.

The cubic polynomial f(x) is defined by $f(x) = 4x^3 - 7x - 3$.

- (i) Find the remainder when f(x) is divided by (x-2). [2]
- (ii) Show that (2x + 1) is a factor of f(x) and hence factorise f(x) completely. [6]
- (iii) Solve the equation

$$4\cos^3\theta - 7\cos\theta - 3 = 0$$

for $0 \le \theta \le 2\pi$. Give each solution for θ in an exact form. [4]

Q9 June 2013

30.

The diagram shows triangle ABC, with AB = 8 cm, angle $BAC = 65^{\circ}$ and angle $BCA = 30^{\circ}$. The point D is on AC such that AD = 10 cm.

(i) Find the area of triangle *ABD*. [2]

(ii) Find the length of BD. [2]

(iii) Find the length of BC. [2]

Q1 June 2014

(i) Show that the equation

$$\sin x - \cos x = \frac{6\cos x}{\tan x}$$

can be expressed in the form

$$\tan^2 x - \tan x - 6 = 0.$$
 [2]

(ii) Hence solve the equation
$$\sin x - \cos x = \frac{6 \cos x}{\tan x}$$
 for $0^{\circ} \le x \le 360^{\circ}$. [4]

Q4 June 2014

32.

The diagram shows part of the curve $y = 2\cos\frac{1}{3}x$, where x is in radians, and the line y = k.

- (i) The smallest positive solution of the equation $2\cos\frac{1}{3}x = k$ is denoted by α . State, in terms of α ,
 - (a) the next smallest positive solution of the equation $2\cos\frac{1}{3}x = k$, [1]
 - **(b)** the smallest positive solution of the equation $2\cos\frac{1}{3}x = -k$. [2]
- (ii) The curve $y = 2\cos\frac{1}{3}x$ is shown in the Printed Answer Book. On the diagram, and for the same values of x, sketch the curve of $y = \sin\frac{1}{3}x$.
- (iii) Calculate the x-coordinates of the points of intersection of the curves in part (ii). Give your answers in radians correct to 3 significant figures. [4]

Q9 June 2015