## Edexcel

## Pure Mathematics

## Year 1

## Trigonometry

Past paper questions from Core Maths 2 and IAL C12


Edited by: K V Kumaran

## Past paper questions from

## Edexcel Core Maths 2 and IAL C12.

## From Jan 2005 to Oct 2019.

This Section 1 has 44 Questions on

- Solving Trigonometry Equations
- Identities

Please check the Edexcel website for the solutions.

1. (a) Show that the equation

$$
5 \cos ^{2} x=3(1+\sin x)
$$

can be written as

$$
\begin{equation*}
5 \sin ^{2} x+3 \sin x-2=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$, the equation

$$
5 \cos ^{2} x=3(1+\sin x)
$$

giving your answers to 1 decimal place where appropriate.
Jan 2005, Q4
2. Solve, for $0 \leq x \leq 180^{\circ}$, the equation
(a) $\sin \left(x+10^{\circ}\right)=\frac{\sqrt{ } 3}{2}$,
(b) $\cos 2 x=-0.9$, giving your answers to 1 decimal place.

June 2005, Q5
3. (a) Find all the values of $\theta$, to 1 decimal place, in the interval $0^{\circ} \leq \theta<360^{\circ}$ for which

$$
\begin{equation*}
5 \sin \left(\theta+30^{\circ}\right)=3 \tag{4}
\end{equation*}
$$

(b) Find all the values of $\theta$, to 1 decimal place, in the interval $0^{\circ} \leq \theta<360^{\circ}$ for which

$$
\begin{equation*}
\tan ^{2} \theta=4 \tag{5}
\end{equation*}
$$

Jan 2006, Q8
4. (a) Given that $\sin \theta=5 \cos \theta$, find the value of $\tan \theta$.
(b) Hence, or otherwise, find the values of $\theta$ in the interval $0 \leq \theta<360^{\circ}$ for which

$$
\sin \theta=5 \cos \theta
$$

giving your answers to 1 decimal place.
5. Find all the solutions, in the interval $0 \leq x<360^{\circ}$, of the equation

$$
2 \cos ^{2} x+1=5 \sin x,
$$

giving each solution in exact form.
6. (a) Sketch, for $0 \leq x \leq 360^{\circ}$, the graph of $y=\sin (x+30)$.
(b) Write down the exact coordinates of the points where the graph meets the coordinate axes.
(c) Solve, for $0 \leq x \leq 360^{\circ}$, the equation

$$
\sin (x+30)=0.65
$$

giving your answers in degrees to 2 decimal places.
7. (a) Show that the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1
$$

can be written as

$$
5 \sin ^{2} \theta=3
$$

(b) Hence solve, for $0^{\circ} \leq \theta<360^{\circ}$, the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1,
$$

giving your answer to 1 decimal place.

Jan 2008, Q4
8. Solve, for $0 \leq x<360^{\circ}$,
(a) $\sin \left(x-20^{\circ}\right)=\frac{1}{\sqrt{2}}$,
(b) $\cos 3 x=-\frac{1}{2}$.
9. (a) Show that the equation

$$
4 \sin ^{2} x+9 \cos x-6=0
$$

can be written as

$$
\begin{equation*}
4 \cos ^{2} x-9 \cos x+2=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<720^{\circ}$,

$$
4 \sin ^{2} x+9 \cos x-6=0
$$

giving your answers to 1 decimal place.

Jan 2009, Q8
10. (i) Solve, for $-180^{\circ} \leq \theta<180^{\circ}$,

$$
\begin{equation*}
(1+\tan \theta)(5 \sin \theta-2)=0 . \tag{4}
\end{equation*}
$$

(ii) Solve, for $0 \leq x<360^{\circ}$,

$$
4 \sin x=3 \tan x .
$$

11. (a) Show that the equation

$$
5 \sin x=1+2 \cos ^{2} x
$$

can be written in the form

$$
\begin{equation*}
2 \sin ^{2} x+5 \sin x-3=0 \tag{2}
\end{equation*}
$$

(b) Solve, for $0 \leq x<360^{\circ}$,

$$
2 \sin ^{2} x+5 \sin x-3=0
$$

12. (a) Given that $5 \sin \theta=2 \cos \theta$, find the value of $\tan \theta$.
(b) Solve, for $0 \leq x<360^{\circ}$,

$$
5 \sin 2 x=2 \cos 2 x,
$$

giving your answers to 1 decimal place.
13. (a) Show that the equation

$$
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
$$

can be written in the form

$$
\begin{equation*}
4 \sin ^{2} x+7 \sin x+3=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$,

$$
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
$$

giving your answers to 1 decimal place where appropriate.

Jan 2011, Q7
14. (a) Solve for $0 \leq x<360^{\circ}$, giving your answers in degrees to one decimal place,

$$
\begin{equation*}
3 \sin \left(x+45^{\circ}\right)=2 . \tag{4}
\end{equation*}
$$

(b) Find, for $0 \leq x<360^{\circ}$, all the solutions of

$$
2 \sin ^{2} x+2=7 \cos x,
$$

giving your answers in degrees to one decimal place.
You must show clearly how you obtained your answers.

May 2011, Q7
15. (i) Find the solutions of the equation $\sin \left(3 x-15^{\circ}\right)=\frac{1}{2}$, for which $0 \leq x \leq 180^{\circ}$.
(ii)


Figure 4
Figure 4 shows part of the curve with equation

$$
y=\sin (a x-b), \text { where } a>0,0<b<180 .
$$

The curve cuts the $x$-axis at the points $P, Q$ and $R$ as shown.
Given that the coordinates of $P, Q$ and $R$ are $(18,0),(108,0)$ and $(198,0)$ respectively, find the values of $a$ and $b$.
16. (a) Show that the equation

$$
\tan 2 x=5 \sin 2 x
$$

can be written in the form

$$
(1-5 \cos 2 x) \sin 2 x=0
$$

(b) Hence solve, for $0 \leq x \leq 180^{\circ}$,

$$
\tan 2 x=5 \sin 2 x,
$$

giving your answers to 1 decimal place where appropriate.
You must show clearly how you obtained your answers.

May 2012, Q6
17. Solve, for $0 \leq x<180^{\circ}$,

$$
\cos \left(3 x-10^{\circ}\right)=-0.4,
$$

giving your answers to 1 decimal place. You should show each step in your working.
18. (i) Solve, for $-180^{\circ} \leq x<180^{\circ}$,

$$
\tan \left(x-40^{\circ}\right)=1.5
$$

giving your answers to 1 decimal place.
(ii) (a) Show that the equation

$$
\sin \theta \tan \theta=3 \cos \theta+2
$$

can be written in the form

$$
\begin{equation*}
4 \cos ^{2} \theta+2 \cos \theta-1=0 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leq \theta<360^{\circ}$,

$$
\sin \theta \tan \theta=3 \cos \theta+2,
$$

showing each stage of your working.
19. (i) Solve, for $0 \leq \theta<180^{\circ}$

$$
\sin \left(2 \theta-30^{\circ}\right)+1=0.4
$$

giving your answers to 1 decimal place.
(ii) Find all the values of $x$, in the interval $0 \leq \theta<360^{\circ}$, for which

$$
9 \cos ^{2} x-11 \cos x+3 \sin ^{2} x=0
$$

giving your answers to 1 decimal place.

You must show clearly how you obtained your answers.
20. (i) Solve, for $0 \leq \theta<180^{\circ}$, the equation

$$
\frac{\sin 2 \theta}{(4 \sin 2 \theta-1)}=1
$$

giving your answers to 1 decimal place.
(ii) Solve, for $0 \leq x<360^{\circ}$, the equation

$$
5 \sin ^{2} x-2 \cos x-5=0
$$

giving your answers to 2 decimal places.
21. (i) Solve, for $0 \leq \theta<360^{\circ}$, the equation $9 \sin \left(\theta+60^{\circ}\right)=4$, giving your answers to 1 decimal place. You must show each step of your working.
(ii) Solve, for $-180^{\circ} \leq x<180^{\circ}$, the equation $2 \tan x-3 \sin x=0$, giving your answers to 2 decimal places where appropriate.

May 2014, Q7
22. (i) Solve, for $0 \leq \theta<180^{\circ}$, the equation

$$
\sin 3 \theta-\sqrt{3} \cos 3 \theta=0
$$

(ii) Given that

$$
4 \sin ^{2} x+\cos x=4-k, \quad 0 \leq k \leq 3,
$$

(a) find $\cos x$ in terms of $k$.
(b) When $k=3$, find the values of $x$ in the range $0 \leq x<360^{\circ}$.
23. (i) Solve, for $-180^{\circ}<\theta \leq 180^{\circ}$,

$$
\begin{equation*}
1-2 \cos (\theta-36)=0 \tag{3}
\end{equation*}
$$

(ii) Solve, for $0 \leq x<360^{\circ}$,

$$
4 \cos ^{2} x+7 \sin x-2=0
$$

giving your answers to one decimal place.
24. (a) Show that the equation

$$
\cos ^{2} x=8 \sin ^{2} x-6 \sin x
$$

can be written in the form

$$
\begin{equation*}
(3 \sin x-1)^{2}=2 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leqslant x<360^{\circ}$,

$$
\cos ^{2} x=8 \sin ^{2} x-6 \sin x
$$

giving your answers to 2 decimal places.
25. (i) Solve, for $0 \leq x<180^{\circ}$

$$
4 \cos \left(x+70^{\circ}\right)=3
$$

giving your answers to 1 decimal place.
(ii) Find all the values of $x$, in the interval $0 \leq x<360^{\circ}$, for which

$$
6 \cos ^{2} x-5=6 \sin ^{2} x+\sin x
$$

giving your answers to 1 decimal place.

May 2018, Q8
26.
(a) Show that the equation

$$
6 \cos ^{2} x-\sin x-4=0
$$

may be written as

$$
\begin{equation*}
6 \sin ^{2} x+\sin x-2=0 \tag{2}
\end{equation*}
$$

(b) Hence solve, for $-90^{\circ} \leqslant y<90^{\circ}$, the equation

$$
6 \cos ^{2}(2 y)-\sin (2 y)-4=0
$$

giving your answers to one decimal place where appropriate.

May 2019, Q7
27. (a) Show that

$$
12 \sin ^{2} x-\cos x-11=0
$$

may be expressed in the form

$$
\begin{equation*}
12 \cos ^{2} x+\cos x-1=0 \tag{1}
\end{equation*}
$$

(b) Hence, using trigonometry, find all the solutions in the interval $0 \leq x \leq 360^{\circ}$ of

$$
12 \sin ^{2} x-\cos x-11=0
$$

Give each solution, in degrees, to 1 decimal place.
28. (a) Show that

$$
\begin{equation*}
\frac{\cos ^{2} x-\sin ^{2} x}{1-\sin ^{2} x} \equiv 1-\tan ^{2} x, \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$,

$$
\frac{\cos ^{2} x-\sin ^{2} x}{1-\sin ^{2} x}+2=0
$$

29. 



Figure 4
Figure 4 shows a sketch of the curve $C$ with equation $y=\sin \left(x-60^{\circ}\right),-360^{\circ} \leq x \leq 360^{\circ}$.
(a) Write down the exact coordinates of the points at which $C$ meets the two coordinate axes.
(b) Solve, for $-360^{\circ} \leq x \leq 360^{\circ}$,

$$
4 \sin \left(x-60^{\circ}\right)=\sqrt{ } 6-\sqrt{ } 2
$$

showing each stage of your working.

IAL, Jan 2015, Q11
30. In this question, solutions based entirely on graphical or numerical methods are not acceptable.
(i) Solve, for $0 \leq x<360^{\circ}$,

$$
3 \sin x+7 \cos x=0
$$

Give each solution, in degrees, to one decimal place.
(ii) Solve, for $0 \leq \theta<360^{\circ}$

$$
10 \cos ^{2} \theta+\cos \theta=11 \sin ^{2} \theta-9
$$

IAL, Jan 2015, Q14
31. (i) Showing each step in your reasoning, prove that

$$
\begin{equation*}
(\sin x+\cos x)(1-\sin x \cos x) \equiv \sin ^{3} x+\cos ^{3} x \tag{3}
\end{equation*}
$$

(ii) Solve, for $0 \leq \theta<360^{\circ}$,

$$
3 \sin \theta=\tan \theta
$$

giving your answers in degrees to 1 decimal place, as appropriate.
32. (a) Given that $7 \sin x=3 \cos x$, find the exact value of $\tan x$.
(b) Hence solve for $0 \leq \theta<360^{\circ}$

$$
7 \sin \left(2 \theta+30^{\circ}\right)=3 \cos \left(2 \theta+30^{\circ}\right)
$$

giving your answers to one decimal place.

IAL, Jan 2016, Q8
33.
(a) Show that the equation

$$
\frac{5+\sin \theta}{3 \cos \theta}=2 \cos \theta, \quad \theta \neq(2 n+1) 90^{\circ}, \quad n \in \square
$$

may be rewritten as

$$
\begin{equation*}
6 \sin ^{2} \theta+\sin \theta-1=0 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $-90^{\circ}<\theta<90^{\circ}$, the equation

$$
\frac{5+\sin \theta}{3 \cos \theta}=2 \cos \theta
$$

Give your answers to one decimal place, where appropriate.
34. (a) Given that

$$
8 \tan x=-3 \cos x
$$

show that

$$
\begin{equation*}
3 \sin ^{2} x-8 \sin x-3=0 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leq \theta<360^{\circ}$,

$$
8 \tan 2 \theta=-3 \cos 2 \theta
$$

giving your answers to one decimal place.
35.
(i) Solve, for $0 \leq x<360^{\circ}$,

$$
3 \cos ^{2} x+1=4 \sin ^{2} x
$$

giving your answers in degrees to 2 decimal places.
(ii) Solve, for $0 \leq \theta<360^{\circ}$

$$
5 \sin \left(+10^{\circ}\right)=\cos \left(+10^{\circ}\right)
$$

giving your answers in degrees to one decimal place.

IAL, Jan 2017, Q11
36. (a) Show that the equation

$$
5 \cos x+1=\sin x \tan x
$$

can be written in the form

$$
\begin{equation*}
6 \cos ^{2} x+\cos x-1=0 \tag{4}
\end{equation*}
$$

(b) Hence solve, for $0 \leqslant \theta<180^{\circ}$

$$
5 \cos 2 \theta+1=\sin 2 \theta \tan 2 \theta
$$

giving your answers, where appropriate, to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)

IAL, May 2017, Q13
37. The height of water, $H$ metres, in a harbour on a particular day is given by the equation

$$
H=4+1.5 \sin (30 t), \quad 0 \leqslant t<24
$$

where $t$ is the number of hours after midnight, and $30 t$ is measured in degrees.
(a) Show that the height of the water at 1 a.m. is 4.75 metres.
(b) Find the height of the water at 2 p.m.
(c) Find, to the nearest minute, the first two times when the height of the water is 3 metres.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
38. (i) Solve, for $0<\theta \leqslant 360^{\circ}$,

$$
3 \sin \left(\theta+30^{\circ}\right)=2 \cos \left(\theta+30^{\circ}\right)
$$

giving your answers, in degrees, to 2 decimal places.
(ii) (a) Given that

$$
\frac{\cos ^{2} x+2 \sin ^{2} x}{1-\sin ^{2} x}=5
$$

show that

$$
\tan ^{2} x=k, \quad \text { where } k \text { is a constant. }
$$

(b) Hence solve, for $0<x \leqslant 360^{\circ}$,

$$
\frac{\cos ^{2} x+2 \sin ^{2} x}{1-\sin ^{2} x}=5
$$

giving your answers, in in degrees, to one decimal place.
IAL, Oct 2017, Q12
39.
(i) Solve, for $0<\theta<180^{\circ}$

$$
5 \sin 3 \theta-7 \cos 3 \theta=0
$$

Give each solution, in degrees, to 3 significant figures.
(ii) Solve, for $0<x<360^{\circ}$

$$
\begin{equation*}
9 \cos ^{2} x+5 \cos x=3 \sin ^{2} x \tag{5}
\end{equation*}
$$

Give each solution, in degrees, to one decimal place.
IAL, Jan 2018, Q5
40.
(i) Solve for $0 \leqslant x<360^{\circ}$,

$$
5 \sin \left(x+65^{\circ}\right)+2=0
$$

giving your answers in degrees to one decimal place.
(ii) Find, for $0 \leqslant \theta<360^{\circ}$, all the solutions of

$$
12 \sin ^{2} \theta+\cos \theta=6
$$

giving your answers in degrees to one decimal place.
41. (a) Show that the equation

$$
6 \cos x-5 \tan x=0
$$

may be expressed in the form

$$
\begin{equation*}
6 \sin ^{2} x+5 \sin x-6=0 \tag{3}
\end{equation*}
$$

(b) Hence solve for $0 \leqslant \theta<360^{\circ}$

$$
6 \cos \left(2 \theta-10^{\circ}\right)-5 \tan \left(2 \theta-10^{\circ}\right)=0
$$

giving your answers to one decimal place.
IAL, Oct 2018, Q12
42.
(i) Solve, for $-180^{\circ} \leqslant x<180^{\circ}$, the equation

$$
\sin \left(x+60^{\circ}\right)=-0.4
$$

giving your answers, in degrees, to one decimal place.
(ii) (a) Show that the equation

$$
2 \sin \theta \tan \theta-3=\cos \theta
$$

can be written in the form

$$
\begin{equation*}
3 \cos ^{2} \theta+3 \cos \theta-2=0 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leqslant \theta<360^{\circ}$, the equation

$$
2 \sin \theta \tan \theta-3=\cos \theta
$$

showing each stage of your working and giving your answers, in degrees, to one decimal place.

IAL, Jan 2019, Q14
43. (i) Solve, for $0 \leq \theta<180^{\circ}$, the equation

$$
7 \sin 2 \theta=5 \cos 2 \theta
$$

giving your answers, in degrees, to one decimal place.
(ii) Solve, for $0 \leq x<360^{\circ}$, the equation

$$
24 \tan x=5 \cos x
$$

giving your answers, in degrees, to one decimal place.

IAL, Oct 2019, Q13
44.
(a) Show that

$$
\frac{2+\cos x}{3+\sin ^{2} x}=\frac{4}{7}
$$

may be expressed in the form

$$
a \cos ^{2} x+b \cos x+c=0
$$

where $a, b$ and $c$ are constants to be found.
(b) Hence solve, for $0 \leq x \leq 360^{\circ}$, the equation

$$
\frac{2+\cos x}{3+\sin ^{2} x}=\frac{4}{7}
$$

giving your answers, in degrees, to one decimal place.

