Edexcel

Pure Mathematics

Year 1

Trigonometry

Past paper questions from Core Maths 2 and IAL C12

Edited by: K V Kumaran

kumarmaths.weebly.com

Past paper questions from Edexcel Core Maths 2 and IAL C12. From Jan 2005 to Oct 2019.

This Section 1 has 44 Questions on

- Solving Trigonometry Equations
- Identities

Please check the Edexcel website for the solutions.

1. (*a*) Show that the equation

 $5\cos^2 x = 3(1+\sin x)$

can be written as

$$5\sin^2 x + 3\sin x - 2 = 0.$$

(*b*) Hence solve, for $0 \le x < 360^\circ$, the equation

$$5\cos^2 x = 3(1 + \sin x),$$

giving your answers to 1 decimal place where appropriate.

(5) Jan 2005, Q4

(2)

2. Solve, for $0 \le x \le 180^\circ$, the equation

(a)
$$\sin(x + 10^\circ) = \frac{\sqrt{3}}{2}$$
, (4)
(b) $\cos 2x = -0.9$ giving your answers to 1 decimal place

(b) $\cos 2x = -0.9$, giving your answers to 1 decimal place.

(4) June 2005, Q5

(4)

(5)

3. (a) Find all the values of θ , to 1 decimal place, in the interval $0^\circ \le \theta < 360^\circ$ for which

$$5\sin\left(\theta + 30^\circ\right) = 3.$$

(b) Find all the values of θ , to 1 decimal place, in the interval $0^\circ \le \theta < 360^\circ$ for which

$$\tan^2 \theta = 4.$$

Jan 2006, Q8

4. (a) Given that
$$\sin \theta = 5 \cos \theta$$
, find the value of $\tan \theta$. (1)

(b) Hence, or otherwise, find the values of θ in the interval $0 \le \theta < 360^{\circ}$ for which

$$\sin \theta = 5 \cos \theta$$

giving your answers to 1 decimal place.

(3) May 2006, Q6

kumarmaths.weebly.com 3

5. Find all the solutions, in the interval $0 \le x < 360^\circ$, of the equation

 $2\cos^2 x + 1 = 5\sin x,$

giving each solution in exact form.

(6) Jan 2007, Q6

6. (a) Sketch, for
$$0 \le x \le 360^\circ$$
, the graph of $y = \sin(x + 30)$.

- (b) Write down the exact coordinates of the points where the graph meets the coordinate axes.
- (c) Solve, for $0 \le x \le 360^\circ$, the equation

$$\sin(x+30) = 0.65$$
,

giving your answers in degrees to 2 decimal places.

(5) May 2007, Q9

7. (*a*) Show that the equation

$$3\sin^2\theta - 2\cos^2\theta = 1$$

5

can be written as

$$\sin^2\theta=3.$$

(b) Hence solve, for
$$0^{\circ} \le \theta < 360^{\circ}$$
, the equation

 $3\sin^2\theta - 2\cos^2\theta = 1,$

giving your answer to 1 decimal place.

(7)

Jan 2008, Q4

8. Solve, for $0 \le x < 360^{\circ}$,

(a)
$$\sin(x - 20^\circ) = \frac{1}{\sqrt{2}}$$
, (4)

(6) June 2008, Q9

kumarmaths.weebly.com 4

(b) $\cos 3x = -\frac{1}{2}$.

(2)

(3)

9. (a) Show that the equation

$$4 \sin^{2} x + 9 \cos x - 6 = 0$$
can be written as

$$4 \cos^{2} x - 9 \cos x + 2 = 0.$$
(2)
(b) Hence solve, for $0 \le x < 720^{\circ}$,

$$4 \sin^{2} x + 9 \cos x - 6 = 0$$
,
giving your answers to 1 decimal place.
(6)
Jan 2009, Q8
10. (i) Solve, for $-180^{\circ} \le \theta < 180^{\circ}$,

$$(1 + \tan \theta)(5 \sin \theta - 2) = 0.$$
(4)
(ii) Solve, for $0 \le x < 360^{\circ}$,

$$4 \sin x = 3 \tan x.$$
(6)
June 2009, Q7
11. (a) Show that the equation

$$5 \sin x = 1 + 2 \cos^{2} x$$
can be written in the form

$$2 \sin^{2} x + 5 \sin x - 3 = 0.$$
(2)
(b) Solve, for $0 \le x < 360^{\circ}$,

$$2 \sin^{2} x + 5 \sin x - 3 = 0.$$
(4)
Jan 2010, Q2
12. (a) Given that $5 \sin \theta = 2 \cos \theta$, find the value of $\tan \theta$.
(b) Solve, for $0 \le x < 360^{\circ}$,

$$5 \sin 2x = 2 \cos 2x$$
,
giving your answers to 1 decimal place.
(5)

(5)

June 2010, Q5

13. (*a*) Show that the equation

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

can be written in the form

$$4\sin^2 x + 7\sin x + 3 = 0.$$
 (2)

(*b*) Hence solve, for $0 \le x < 360^\circ$,

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

giving your answers to 1 decimal place where appropriate.

(5)

(4)

Jan 2011, Q7

14. (a) Solve for $0 \le x < 360^\circ$, giving your answers in degrees to one decimal place,

$$3\sin(x+45^\circ)=2.$$

(*b*) Find, for $0 \le x < 360^\circ$, all the solutions of

$$2\sin^2 x + 2 = 7\cos x,$$

giving your answers in degrees to one decimal place.

You must show clearly how you obtained your answers.

(6)

May 2011, Q7

(i) Find the solutions of the equation $\sin(3x - 15^\circ) = \frac{1}{2}$, for which $0 \le x \le 180^\circ$. 15.

Figure 4

Figure 4 shows part of the curve with equation

 $y = \sin(ax - b)$, where a > 0, 0 < b < 180.

The curve cuts the x-axis at the points P, Q and R as shown.

Given that the coordinates of P, Q and R are (18,0), (108,0) and (198,0) respectively, find the values of *a* and *b*.

> (4) Jan 2012, Q9

16. (*a*) Show that the equation

$$\tan 2x = 5 \sin 2x$$

can be written in the form

$$(1-5\cos 2x)\sin 2x = 0.$$

(*b*) Hence solve, for $0 \le x \le 180^\circ$,

$$\tan 2x = 5 \sin 2x,$$

giving your answers to 1 decimal place where appropriate.

You must show clearly how you obtained your answers.

(5)

(2)

(6)

17. Solve, for $0 \le x < 180^{\circ}$,

$$\cos(3x - 10^\circ) = -0.4$$
,

giving your answers to 1 decimal place. You should show each step in your working.

(7) Jan 2013, Q4

18. (i) Solve, for $-180^{\circ} \le x < 180^{\circ}$,

$$\tan(x - 40^\circ) = 1.5$$
,

giving your answers to 1 decimal place.

(ii) (a) Show that the equation

$$\sin\theta$$
 tan θ = 3 co s θ + 2

can be written in the form

$$4\cos^2\theta + 2\cos\theta - 1 = 0.$$

(*b*) Hence solve, for $0 \le \theta < 360^\circ$,

 $\sin\theta\,\tan\theta=3\cos\theta+2,$

showing each stage of your working.

19. (i) Solve, for
$$0 \le \theta < 180^\circ$$

 $\sin(2\theta - 30^\circ) + 1 = 0.4$

giving your answers to 1 decimal place.

(ii) Find all the values of *x*, in the interval $0 \le \theta < 360^\circ$, for which

You must show clearly how you obtained your answers.

$$9\cos^2 x - 11\cos x + 3\sin^2 x = 0$$

giving your answers to 1 decimal place.

(3)

(3)

(5) May 2013, Q8

(5)

(7)

20. (i) Solve, for $0 \le \theta < 180^\circ$, the equation

$$\frac{\sin 2\theta}{(4\sin 2\theta - 1)} = 1$$

giving your answers to 1 decimal place.

(ii) Solve, for $0 \le x < 360^\circ$, the equation

$$5\sin^2 x - 2\cos x - 5 = 0$$

giving your answers to 2 decimal places.

(5) May 2014_R, Q7

- 21. (i) Solve, for $0 \le \theta < 360^\circ$, the equation 9 sin $(\theta + 60^\circ) = 4$, giving your answers to 1 decimal place. You must show each step of your working.
 - (ii) Solve, for $-180^{\circ} \le x < 180^{\circ}$, the equation $2 \tan x 3 \sin x = 0$, giving your answers to 2 decimal places where appropriate.

(5)

May 2014, Q7

(i) Solve, for $0 \le \theta < 180^\circ$, the equation 22.

$$\sin 3\theta - \sqrt{3} \cos 3\theta = 0,$$

(3)

(ii) Given that

 $4\sin^2 x + \cos x = 4 - k, \qquad 0 \le k \le 3,$

(a) find $\cos x$ in terms of k.

(3)

(b) When k = 3, find the values of x in the range $0 \le x < 360^{\circ}$.

(3) May 2015, Q8

kumarmaths.weebly.com

(3)

(4)

23.	(i)	Solve, for $-180^{\circ} < \theta \le 180^{\circ}$, $1 - 2\cos(\theta - 36) = 0$	
	(ii)	Solve, for $0 \le x < 360^\circ$,	(3)
		$4\cos^2 x + 7\sin x - 2 = 0,$	
		giving your answers to one decimal place.	
24.	(<i>a</i>)	Show that the equation can be written in the form $\cos^2 x = 8\sin^2 x - 6\sin x$ (3sin x = 1) ² = 2	(6) May 2016, Q6
	(<i>b</i>)	Hence solve, for $0 \le x < 360^\circ$, $\cos^2 x = 8\sin^2 x - 6\sin x$ giving your answers to 2 decimal places.	(3)
25.	(i)	Solve, for $0 \le x < 180^{\circ}$	(5) May 2017, Q8

 $4\cos(x+70^\circ)=3$

giving your answers to 1 decimal place.

(ii) Find all the values of *x*, in the interval $0 \le x < 360^\circ$, for which

 $6\cos^2 x - 5 = 6\sin^2 x + \sin x$

giving your answers to 1 decimal place.

(5)

(4)

May 2018, Q8

26.

(a) Show that the equation

 $6\cos^2 x - \sin x - 4 = 0$

may be written as

$$6\sin^2 x + \sin x - 2 = 0$$

(b) Hence solve, for $-90^{\circ} \le y < 90^{\circ}$, the equation

 $6\cos^2(2y) - \sin(2y) - 4 = 0$

giving your answers to one decimal place where appropriate.

(5)

May 2019, Q7

(2)

27. (*a*) Show that

 $12\sin^2 x - \cos x - 11 = 0$

may be expressed in the form

$$12\cos^2 x + \cos x - 1 = 0$$
(1)

(b) Hence, using trigonometry, find all the solutions in the interval $0 \le x \le 360^\circ$ of

$$12\sin^2 x - \cos x - 11 = 0$$

Give each solution, in degrees, to 1 decimal place.

(4)

IAL, Jan 2014, Q7

28. (*a*) Show that

$$\frac{\cos^2 x - \sin^2 x}{1 - \sin^2 x} \equiv 1 - \tan^2 x,$$

(2)

(*b*) Hence solve, for $0 \le x < 360^\circ$,

$$\frac{\cos^2 x - \sin^2 x}{1 - \sin^2 x} + 2 = 0$$

(5)

IAL, May 2014, Q6

Figure 4 shows a sketch of the curve C with equation $y = \sin(x - 60^\circ), -360^\circ \le x \le 360^\circ$.

(a) Write down the exact coordinates of the points at which C meets the two coordinate axes. (3)

(*b*) Solve, for $-360^\circ \le x \le 360^\circ$,

$$4\sin(x-60^{\circ}) = \sqrt{6} - \sqrt{2}$$

showing each stage of your working.

(5)

(4)

IAL, Jan 2015, Q11

- **30.** In this question, solutions based entirely on graphical or numerical methods are not acceptable.
 - (i) Solve, for $0 \le x < 360^\circ$,

 $3\sin x + 7\cos x = 0$

Give each solution, in degrees, to one decimal place.

(ii) Solve, for $0 \le \theta < 360^{\circ}$

$$10\cos^2\theta + \cos\theta = 11\sin^2\theta - 9$$

(6) IAL, Jan 2015, Q14

29.

31. (i) Showing each step in your reasoning, prove that $(\sin x + \cos x)(1 - \sin x \cos x) \equiv \sin^3 x + \cos^3 x$ (3) (ii) Solve, for $0 \le \theta < 360^\circ$, $3\sin\theta = \tan\theta$ giving your answers in degrees to 1 decimal place, as appropriate. (6) IAL, May 2015, Q13 (a) Given that $7\sin x = 3\cos x$, find the exact value of $\tan x$. 32. (1)

(b) Hence solve for $0 \le \theta < 360^{\circ}$

$$7\sin(2\theta + 30^\circ) = 3\cos(2\theta + 30^\circ)$$

giving your answers to one decimal place.

(5)

(3)

IAL, Jan 2016, Q8

33.

(*a*) Show that the equation

$$\frac{5+\sin\theta}{3\cos\theta} = 2\cos\theta, \qquad \theta \neq (2n+1)90^\circ, \quad n \in \square$$

may be rewritten as

$$6\sin^2\theta + \sin\,\theta - 1 = 0$$

(b) Hence solve, for
$$-90^{\circ} < \theta < 90^{\circ}$$
, the equation

$$\frac{5+\sin\theta}{3\cos\theta} = 2\cos\theta$$

Give your answers to one decimal place, where appropriate.

(4) IAL, May 2016, Q8

34. (a) Given that

 $8 \tan x = -3 \cos x$

show that

$$3\sin^2 x - 8\sin x - 3 = 0$$

(b) Hence solve, for $0 \le \theta < 360^\circ$,

$$8\tan 2\theta = -3\cos 2\theta$$

giving your answers to one decimal place.

(5)

(3)

IAL, Oct 2016, Q10

kumarmaths.weebly.com

35.

(i) Solve, for $0 \le x < 360^\circ$,

 $3\cos^2 x + 1 = 4\sin^2 x$

giving your answers in degrees to 2 decimal places.

(ii) Solve, for $0 \le \theta < 360^{\circ}$

 $5\sin(q+10^\circ) = \cos(q+10^\circ)$

giving your answers in degrees to one decimal place.

(5)

(5)

IAL, Jan 2017, Q11

36. (*a*) Show that the equation

 $5\cos x + 1 = \sin x \tan x$

can be written in the form

$$6\cos^2 x + \cos x - 1 = 0$$

(4)

(*b*) Hence solve, for $0 \le \theta < 180^{\circ}$

 $5\cos 2\theta + 1 = \sin 2\theta \tan 2\theta$

giving your answers, where appropriate, to one decimal place.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(6)

IAL, May 2017, Q13

37. The height of water, H metres, in a harbour on a particular day is given by the equation $H = 4 + 1.5 \sin(30t)$, $0 \leq t < 24$ where *t* is the number of hours after midnight, and 30*t* is measured in degrees. (a) Show that the height of the water at 1 a.m. is 4.75 metres. (1) (b) Find the height of the water at 2 p.m. (2) (c) Find, to the nearest minute, the first two times when the height of the water is 3 metres. (Solutions based entirely on graphical or numerical methods are not acceptable.)

IAL, May 2017, Q15

38. (i) Solve, for $0 < \theta \leq 360^\circ$,

 $3\sin(\theta + 30^\circ) = 2\cos(\theta + 30^\circ)$

giving your answers, in degrees, to 2 decimal places.

(ii) (*a*) Given that

$$\frac{\cos^2 x + 2\sin^2 x}{1 - \sin^2 x} = 5$$

show that

 $\tan^2 x = k$, where *k* is a constant.

(*b*) Hence solve, for $0 < x \le 360^\circ$,

 $\frac{\cos^2 x + 2\sin^2 x}{1 - \sin^2 x} = 5$ giving your answers, in in degrees, to one decimal place.

> (7) IAL, Oct 2017, Q12

39.

(i) Solve, for $0 < \theta < 180^{\circ}$

$$5 \sin 3\theta - 7\cos 3\theta = 0$$

Give each solution, in degrees, to 3 significant figures.

(ii) Solve, for $0 < x < 360^{\circ}$ $9 \cos^2 x + 5 \cos x = 3 \sin^2 x$

Give each solution, in degrees, to one decimal place.

(6) IAL, Jan 2018, Q5

40.

(i) Solve for $0 \le x < 360^\circ$,

 $5\sin(x+65^{\circ})+2=0$

giving your answers in degrees to one decimal place.

(ii) Find, for $0 \le \theta < 360^\circ$, all the solutions of

 $12\sin^2\theta + \cos\theta = 6$

giving your answers in degrees to one decimal place.

(6)

IAL, May 2018, Q12

(4)

(5)

(4)

41.	(<i>a</i>)	Show that the equation
		$6\cos x - 5\tan x = 0$
		may be expressed in the form
		$6\sin^2 x + 5\sin x - 6 = 0$
		(3)
	(<i>b</i>)	Hence solve for $0 \le \theta < 360^{\circ}$
		$6\cos(2\theta - 10^\circ) - 5\tan(2\theta - 10^\circ) = 0$
		giving your answers to one decimal place.
		(5)
		IAL, Oct 2018, Q12
42.		
	(i)	Solve, for $-180^{\circ} \leq x < 180^{\circ}$, the equation
		$\sin(x+60^{\circ}) = -0.4$
		giving your answers, in degrees, to one decimal place.
	<i>/·· `</i>	(4)
	(11)	(a) Show that the equation $2 - 6 - 2 = -6$
		$2\sin\theta \tan\theta - 3 = \cos\theta$
		can be written in the form $3\cos^2 \theta + 3\cos \theta = 2 = 0$
		$3\cos^{-1}\theta + 3\cos^{-1}\theta - 2 = 0$ (3)
	(b)	Hence solve for $0 \le \theta \le 360^\circ$ the equation
	(0)	$2\sin\theta \tan\theta - 3 = \cos\theta$
		showing each stage of your working and giving your answers, in degrees.
		to one decimal place.
		(4)
		IAL, Jan 2019, Q14
43.	(i)	Solve, for $0 \le \theta < 180^{\circ}$, the equation
		$7 \sin 2\theta = 5 \cos 2\theta$
		giving your answers, in degrees, to one decimal place.
		(4)
	(ii)	Solve, for $0 \le x < 360^\circ$, the equation

24 tan $x = 5 \cos x$

giving your answers, in degrees, to one decimal place.

(5) IAL, Oct 2019, Q13 **44**.

(a) Show that

$$\frac{2 + \cos x}{3 + \sin^2 x} = \frac{4}{7}$$

may be expressed in the form

$$a\cos^2 x + b\cos x + c = 0$$

where a, b and c are constants to be found.

(b) Hence solve, for $0 \le x \le 360^{\circ}$, the equation

$$\frac{2+\cos x}{3+\sin^2 x} = \frac{4}{7}$$

giving your answers, in degrees, to one decimal place.

(5) IAL, May 2019, Q12

(3)