Kumarmaths

 Pearson Edexcel

 Pearson Edexcel

 GCSE Maths 9-1

 GCSE Maths 9-1

 Past Exam Questions

 Past Exam Questions
 by Topics.
 Algebra: Surds-Higher

1. (a) Write down the value of $49^{\frac{1}{2}}$
(b) Write $\sqrt{45}$ in the form $k \sqrt{5}$, where k is an integer.
2. Express $\sqrt{ } 48+\sqrt{ } 108$ in the form $k \sqrt{ } 6$ where k is a surd.
3. (a) Rationalise the denominator of $\frac{6}{\sqrt{5}}$
(b) Expand and simplify $(2+\sqrt{ } 10)(\sqrt{ } 5+\sqrt{20})$
4. Work out $(2+\sqrt{ } 3)(2-\sqrt{ } 3)$

Give your answer in its simplest form.
5. Expand $(1+\sqrt{ } 2)(3-\sqrt{ } 2)$

Give your answer in the form $a+b \sqrt{ } 2$ where a and b are integers.
6. (a) Write the following five numbers in order of size.

Start with the smallest number.
2^{0}
$\sqrt{ } 2$
$\frac{1}{2}$
2^{-2}
$\frac{1}{\sqrt{2}}$
(b) Simplify $\left(\frac{2}{\sqrt{2}}\right)^{3}$

Give your answer in the form $a \sqrt{ } 2$ where a is an integer.
7. Given that $\frac{8-\sqrt{18}}{\sqrt{2}}=a+b \sqrt{2}$, where a and b are integers,
find the value of a and the value of b.

$$
a=
$$

$$
b=
$$

\qquad
8. Show that $\frac{(\sqrt{18}+\sqrt{2})^{2}}{\sqrt{8} 2}$ can be written in the form $a(b+\sqrt{2})$ where a and b are integers.
9. $\sqrt{5}(\sqrt{8}+\sqrt{18})$ can be written in the form $a \sqrt{10}$ where a is an integer.

Find the value of a.

$$
a=
$$

10. Show that $\frac{6 \sqrt{8}}{\sqrt{2}}$ can be written in the form $a+b \sqrt{2}$ where a and b are integers.
11. Show that $\frac{3+\sqrt{2}}{5+\sqrt{8}}$ can be written as $\frac{11-\sqrt{2}}{17}$
12. Show that $\frac{4}{\frac{1}{\sqrt{3}}+\sqrt{3}}$ can be written as $\sqrt{3}$
13. $(a+\sqrt{ } 8)^{2}$ can be written in the form $c+d \sqrt{ } 2$, where a, c and d are integers.

Find, in terms of a, an expression for c and an expression for d.

$$
\begin{aligned}
& c=\text {.. } \\
& d=. ~
\end{aligned}
$$

14. $\quad a=\sqrt{ } 7+\sqrt{ } c$ and $b=\sqrt{ } 63+\sqrt{ } d$, where c and d are positive integers.

Given that $c: d=1: 9$
find, in its simplest form, the ratio $a: b$
15. $\frac{1+\sqrt{2}}{(3 \sqrt{2})^{2}}$ can be written in the form $a+b \sqrt{2}$

Find the value of a and the value of b.

$$
\begin{gathered}
a=\text {... } \\
b= \\
b
\end{gathered} .
$$

16. (a) Simplify

$$
\sqrt{32}+\sqrt{ } 18
$$

giving your answer in the form $a \sqrt{ } 2$, where a is an integer.
(b) Simplify

$$
\frac{\sqrt{ } 32+\sqrt{ } 18}{3+\sqrt{ } 2}
$$

giving your answer in the form $b \sqrt{ } 2+c$, where b and c are integers.
17. Martin did this question.

Rationalise the denominator of $\frac{14}{2+\sqrt{3}}$
Here is how he answered the question.

$$
\begin{aligned}
\frac{14}{2+\sqrt{3}} & =\frac{14 \quad(2 \quad \sqrt{3})}{(2+\sqrt{3})(2 \sqrt{3})} \\
& =\frac{2814 \sqrt{3}}{4+2 \sqrt{3} \quad 2 \sqrt{3}+3} \\
& =\frac{28 \quad 14 \sqrt{3}}{7} \\
& =4 \quad 2 \sqrt{3}
\end{aligned}
$$

Martin's answer is wrong.
(a) Find Martin's mistake.
\qquad
\qquad
Sian did this question.
Rationalise the denominator of $\frac{5}{\sqrt{12}}$
Here is how she answered the question.

$$
\begin{aligned}
\frac{5}{\sqrt{12}} & =\frac{5 \sqrt{12}}{\sqrt{12} \sqrt{12}} \\
& =\frac{53 \sqrt{2}}{12} \\
& =\frac{5 \sqrt{2}}{4}
\end{aligned}
$$

Sian's answer is wrong.
(b) Find Sian's mistake.
\qquad
\qquad
18. A trapezium $A B C D$ has an area of $5 \sqrt{6} \mathrm{~cm}^{2}$.

Diagram NOT
accurately drawn
$A B=4 \mathrm{~cm}$.
$B C=\sqrt{3} \mathrm{~cm}$.
$D C=k \mathrm{~cm}$.
Calculate the value of k, giving your answer in the form $a \sqrt{ } b-c$, where a, b and c are positive integers. Show each step in your working.

$$
k=
$$

\qquad

