Kumarmaths

Pearson Edexcel GCSE Maths 9 -1 Past Exam Questions by Topics. Algebra: Surds-Higher

www.kumarmaths.weebly.com

1.	(a) Write down the value of $49^{\frac{1}{2}}$	
	(b) Write $\sqrt{45}$ in the form $k\sqrt{5}$, where <i>k</i> is an integer.	(1)
2.	Express $\sqrt{48} + \sqrt{108}$ in the form $k\sqrt{6}$ where k is a surd.	(1) (2 marks)
3.	(a) Rationalise the denominator of $\frac{6}{\sqrt{5}}$	(3 marks)
	(b) Expand and simplify $(2 + \sqrt{10})(\sqrt{5} + \sqrt{20})$	(2)
4.	Work out $(2 + \sqrt{3})(2 - \sqrt{3})$ Give your answer in its simplest form.	(4) (6 marks)
	 www.kumarmaths.v	(2 marks) weebly.com 2

8. Show that
$$\frac{(\sqrt{18} + \sqrt{2})^2}{\sqrt{8} - 2}$$
 can be written in the form $a(b + \sqrt{2})$ where a and b are integers.
9. $\sqrt{5}(\sqrt{8} + \sqrt{18})$ can be written in the form $a\sqrt{10}$ where a is an integer.
Find the value of a .
10. Show that $\frac{6 - \sqrt{8}}{\sqrt{2} - 1}$ can be written in the form $a + b\sqrt{2}$ where a and b are integers.
11. Show that $\frac{3 + \sqrt{2}}{5 + \sqrt{8}}$ can be written as $\frac{11 - \sqrt{2}}{17}$ (3 marks)
(3 marks)
(3 marks)
(3 marks)

12. Show that $\frac{4}{\frac{1}{\sqrt{3}} + \sqrt{3}}$ can be written as $\sqrt{3}$

13. $(a + \sqrt{8})^2$ can be written in the form $c + d\sqrt{2}$, where *a*, *c* and *d* are integers. Find, in terms of *a*, an expression for *c* **and** an expression for *d*.

> *c* = *d* =

> > (3 marks)

(3 marks)

14. $a = \sqrt{7} + \sqrt{c}$ and $b = \sqrt{63} + \sqrt{d}$, where c and d are positive integers.

Given that c: d = 1:9

find, in its simplest form, the ratio a: b

(3 marks)

15.
$$\frac{1+\sqrt{2}}{(3-\sqrt{2})^2}$$
 can be written in the form $a+b\sqrt{2}$

Find the value of *a* and the value of *b*.

a = *b* =

(5 marks)

16. (*a*) Simplify

$$\sqrt{32} + \sqrt{18}$$
,

giving your answer in the form $a\sqrt{2}$, where *a* is an integer.

(2)

(*b*) Simplify

$$\frac{\sqrt{32}+\sqrt{18}}{3+\sqrt{2}},$$

giving your answer in the form $b\sqrt{2} + c$, where b and c are integers.

(4)

(6 marks)

17. Martin did this question.

Rationalise the denominator of $\frac{14}{2+\sqrt{3}}$

Here is how he answered the question.

$$\frac{14}{2+\sqrt{3}} = \frac{14(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}$$
$$= \frac{28-14\sqrt{3}}{4+2\sqrt{3}-2\sqrt{3}+3}$$
$$= \frac{28-14\sqrt{3}}{7}$$
$$= 4-2\sqrt{3}$$

Martin's answer is wrong.

(a) Find Martin's mistake.

.....

(1)

Sian did this question.

Rationalise the denominator of $\frac{5}{\sqrt{12}}$

Here is how she answered the question.

$$\frac{5}{\sqrt{12}} = \frac{5\sqrt{12}}{\sqrt{12} \sqrt{12}}$$
$$= \frac{5\sqrt{3}\sqrt{2}}{12}$$
$$= \frac{5\sqrt{2}}{4}$$

Sian's answer is wrong.

(b) Find Sian's mistake.

(1) (2 marks) www.kumarmaths.weebly.com **18.** A trapezium *ABCD* has an area of $5\sqrt{6}$ cm².

Calculate the value of k, giving your answer in the form $a\sqrt{b} - c$, where a, b and c are positive integers. Show each step in your working.

k =

(3 marks)