Edexcel Pure Mathematics

Year 2

Recurrence Relations.

Edited by: K V Kumaran

Kumarmaths.weebly.com

1. The sequence of positive numbers $u_1, u_2, u_3, ...,$ is given by

 $u_{n+1} = (u_n - 3)^2, \qquad u_1 = 1.$

(a) Find u_2 , u_3 and u_4 .

- (b) Write down the value of u_{20} .
- A sequence a_1, a_2, a_3, \ldots is defined by 2.
 - $a_{n+1} = 3a_n 5, \quad n \ge 1.$

 $a_1 = 3$,

- (a) Find the value a_2 and the value of a_3 .
- (b) Calculate the value of $\sum_{r=1}^{5} a_r$.
- A sequence a_1, a_2, a_3, \dots is defined by

 $a_1 = k$,

where *k* is a positive integer.

3.

- (a) Write down an expression for a_2 in terms of k.
- (*b*) Show that $a_3 = 9k + 20$.
- (c) (i) Find $\sum_{r=1}^{4} a_r$ in terms of k. (ii) Show that $\sum_{r=1}^{4} a_r$ is divisible by 10.

(4)

(C1, Q8 May 2007)

Kumarmaths.weebly.com

(1) (C1, Q2 Jan 2006)

(3)

(2)

(C1, Q4 May 2006)

 $a_{n+1} = 3a_n + 5, n \ge 1,$

(1)

(2)

(3)

4. A sequence is given by

 $x_1 = 1,$ $x_{n+1} = x_n(p + x_n),$

where *p* is a constant $(p \neq 0)$.

(a) Find
$$x_2$$
 in terms of p . (1)

(b) Show that $x_3 = 1 + 3p + 2p^2$.

Given that $x_3 = 1$,

- (c) find the value of p, (3)
- (d) write down the value of x_{2008} .

(2)

(2)

(C1, Q7 Jan 2008)

5. A sequence x_1, x_2, x_3, \dots is defined by

$$x_1 = 1,$$

 $x_{n+1} = ax_n - 3, \quad n \ge 1,$

where *a* is a constant.

- (a) Find an expression for x_2 in terms of a.
- (*b*) Show that $x_3 = a^2 3a 3$.

Given that $x_3 = 7$,

(c) find the possible values of a.

(3)

(1)

(2)

(C1, Q5 June 2008)

6. A sequence a_1, a_2, a_3, \dots is defined by

 $a_1 = k$,

$$a_{n+1} = 2a_n - 7, \quad n \ge 1,$$

where k is a constant.

(a) Write down an expression for a_2 in terms of k.

(1)

(*b*) Show that $a_3 = 4k - 21$.

Given that
$$\sum_{r=1}^{4} a_r = 43$$
,

(c) find the value of k.

(4)

(C1, Q7 June 2009)

7. A sequence of positive numbers is defined by

$$a_{n+1} = \sqrt{(a_n^2 + 3)}, \quad n \ge 1,$$

 $a_1 = 2.$

- (a) Find a_2 and a_3 , leaving your answers in surd form.
- (b) Show that $a_5 = 4$.

(2)

(2)

(C1, Q5 May 2010)

8. A sequence a_1, a_2, a_3, \dots is defined by

 $a_1 = 2,$ $a_{n+1} = 3a_n - c$

where *c* is a constant.

(a) Find an expression for a_2 in terms of c.

Given that $\sum_{i=1}^{3} a_i = 0$,

(*b*) find the value of *c*.

(4)

(1)

(C1, Q4 Jan 2011)

Kumarmaths.weebly.com 4

A sequence a_1, a_2, a_3, \dots , is defined by 9.

$$a_1 = k,$$

 $a_{n+1} = 5 a_n + 3, \quad n \ge 1$

where *k* is a positive integer.

- (a) Write down an expression for a_2 in terms of k.
- (*b*) Show that $a_3 = 25k + 18$.

(2)

(4)

(1)

(c) (i) Find
$$\sum_{r=1}^{4} a_r$$
 in terms of k, in its simplest form.
(ii) Show that $\sum_{r=1}^{4} a_r$ is divisible by 6.
(4)
(C1, Q5 May 2011)

A sequence x_1, x_2, x_3, \ldots is defined by 10.

> $x_1 = 1$, $x_{n+1} = a x_n + 5, \qquad n \ge 1,$

where *a* is a constant.

(a) Write down an expression for x_2 in terms of a.

(1)

(2)

(b) Show that $x_3 = a^2 + 5a + 5$.

Given that $x_3 = 41$

(c) find the possible values of a.

(3)

(C1, Q4 Jan 2012)

A sequence of numbers a_1, a_2, a_3, \dots is defined by 11.

$$a_1 = 3,$$

 $a_{n+1} = 2a_n - c, \qquad (n \ge 1),$

where *c* is a constant.

- (a) Write down an expression, in terms of c, for a_2 .
- (*b*) Show that $a_3 = 12 3c$.

Given that
$$\sum_{i=1}^{4} a_i \ge 23$$
,

- (c) find the range of values of c.
- 12. A sequence u_1 , u_2 , u_3 , ..., satisfies

$$u_{n+1} = 2u_n - 1, n \ge 1$$

Given that $u_2 = 9$,

(a) find the value of u_3 and the value of u_4 ,

(b) evaluate
$$\sum_{r=1}^{4} u_r$$
.

A sequence a_1, a_2, a_3, \dots is defined by 13.

> $a_1 = 4$, $a_{n+1} = k(a_n + 2),$ for $n \ge 1$

where *k* is a constant.

(a) Find an expression for a_2 in terms of k.

Kumarmaths.weebly.com

) (C1, Q5 May 2012)

$$u_{n+1} = 2u_n - 1$$
, $n > 1$

(1)

(2)

(1)

Given that
$$\sum_{l=1}^{3} a_{l} = 2$$
,
(b) find the two possible values of k.
(c1, Q4 May 2013)
14. A sequence $x_{1}, x_{2}, x_{3}, ...$ is defined by
 $x_{1} = 1,$
 $x_{n+1} = (x_{n})^{2} - kx_{n}, \quad n \ge 1,$
where k is a constant.
(a) Find an expression for x_{2} in terms of k.
(1)
(b) Show that $x_{3} = 1 - 3k + 2k^{2}$.
(c) Given also that $x_{3} = 1,$
(c) calculate the value of k.
(d) Hence find the value of $\sum_{n=1}^{10} x_{n}$.
(3)
(c1, Q6 May 2013_R)
15. A sequence of numbers $a_{1}, a_{2}, a_{3}...$ is defined by
 $a_{n+1} = 5a_{n} - 3, \quad n \ge 1.$

Given that $a_2 = 7$,

- (a) find the value of a_1 . (2) (b) Find the value of $\sum_{r=1}^{4} a_r$.
 - (3) (C1, Q5 May 2014)

(1)

(2)

(3)

(3)

A sequence a_1, a_2, a_3, \dots is defined by 16.

> $a_{n+1}=4a_n-3, \qquad n\geq 1$ $a_1 = k$, where *k* is a positive integer.

(a) Write down an expression for a_2 in terms of k.

Given that $\sum_{r=1}^{3} a_r = 66$

(*b*) find the value of *k*.

(4) (C1, Q3 May 2014_R)

(1)

17. (i) A sequence U_1, U_2, U_3, \dots is defined by

$$U_{n+2} = 2U_{n+1} - U_n, \quad n \ge 1,$$

 $U_1 = 4 \text{ and } U_2 = 4.$

Find the value of

(*a*) *U*₃, (1)

(b)
$$\sum_{n=1}^{20} U_n$$
. (2)

(ii) Another sequence V_1 , V_2 , V_3 , ... is defined by

$$V_{n+2} = 2V_{n+1} - V_n, \quad n \ge 1,$$

$$V_1 = k$$
 and $V_2 = 2k$, where k is a constant.

(a) Find V_3 and V_4 in terms of k.

Given that
$$\sum_{n=1}^{5} V_n = 165$$
,

(*b*) find the value of *k*.

(3) (C1, Q4 May 2015) Kumarmaths.weebly.com

18. A sequence a_1, a_2, a_3, \ldots is defined by

$$a_1 = 4$$
,

$$a_{n+1}=5-ka_n, \quad n\geq 1,$$

where k is a constant.

(a) Write down expressions for
$$a_2$$
 and a_3 in terms of k.

Find

(b) $\sum_{r=1}^{3} (1+a_r)$ in terms of k, giving your answer in its simplest form,

(c)
$$\sum_{r=1}^{100} (a_{r+1} + ka_r)$$
. (1)

19. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 1$$

$$a_{n+1} = \frac{k(a_n + 1)}{a_n}, \qquad n \ge 1$$

where *k* is a positive constant.

(a) Write down expressions for a_2 and a_3 in terms of k, giving your answers in their simplest form.

3 (**3**)

Given that $\mathop{\text{a}}_{r=1}^{3} a_{r} = 10$

(b) find an exact value for k.

(3) (C1, Q3 May 2017)

(C1, Q6 May 2016)

(2)

(3)

20. Given that for all positive integers *n*,

$$\sum_{r=1}^{n} a_r = 12 + 4n^2$$

(a) find the value of $\sum_{r=1}^{5} a_r$

(b) find the value of a_6

(3) (IAL C1, Q5, Jan 2014)

(2)

Kumarmaths.weebly.com 9

21. A sequence is defined by

$$u_1 = 3$$

 $u_{n+1} = 2 - \frac{4}{u_n}, \quad n \ge 1$

Find the exact values of

(a)
$$u_2$$
, u_3 and u_4

(3) $(b) \ u_{61}$

(c)
$$\sum_{i=1}^{n} u_i$$
 (3)
(IAL C12, Q5, Jan 2014)

22. A sequence is defined by

(a) Write down fully simplified expressions for
$$u_2$$
, u_3 and u_4 in terms of k. (4)
Given that $u_4 = 15$

 $u_{n+1} = 3u_n - 12, \quad n \ge 1,$

Given that
$$u_4 = 15$$

- (b) find the value of k,
- (c) find $\sum_{i=1}^{4} u_i$, giving an exact numerical answer.

 $u_1 = k$

23. A sequence is defined by

$$u_1 = 4$$
$$u_{n+1} = \frac{2u_n}{3}, \qquad n \ge 1$$

- (a) Find the exact values of u_2 , u_3 and u_4 .
- (b) Find the value of u_{20} , giving your answer to 3 significant figures.
- (c) Evaluate

$$12 - \sum_{i=1}^{16} u_1$$

giving your answer to 3 significant figures.

(d) Explain why
$$\sum_{i=1}^{N} u_i < 12$$
 for all positive integer values of N. (1)

(IAL C12, Q10, May 2015)

Kumarmaths.weebly.com 10

(3)

(2)

- (3) (IAL C12, Q8, Jan 2015)

.

(2)

24. A sequence of numbers u_1, u_2, u_3, \ldots satisfies

 $u_{n+1}=2u_n-6, \quad n\geq 1$

Given that $u_1 = 2$

- (*a*) find the value of u_3
- (b) evaluate $\sum_{i=1}^{4} u_i$ (3)

(IAL C12, Q1, Jan 2016)

(2)

25. A sequence is defined by

$$u_1 = 36$$

 $u_{n+1} = \frac{2}{3}u_n, \quad n \ge 1$

(a) Find the exact simplified values of u_2 , u_3 and u_4 (2)

(1)

- (c) Find, giving your answer to 4 significant figures, the value of u_{11} (2)
- (d) Find the exact value of $\sum_{i=1}^{6} u_i$ (2)
- (*e*) Find the value of

(2) (IAL C12, Q6, Oct 2016)

26. A sequence is defined by

$$u_1 = 1$$
$$u_{n+1} = 2 - 3u_n \quad n \ge 1$$

(a) Find the value of u_2 and the value of u_3

(b) Write down the common ratio of the sequence.

 $\sum_{i=1}^{\infty} u_i$

(*b*) Calculate the value of

$$\sum_{r=1}^{4} r - u_n$$

(IAL C12, Q2, Jan 2018)

 $-u_n$

(2)

.

27. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 4$$

$$a_{n+1} = \frac{a_n}{a_n + 1} , \qquad n \ge 1, n \in \mathbb{N}$$

(a) Find the values of a_2 , a_3 and a_4

Write your answers as simplified fractions.

Given that

$$a_n = \frac{4}{pn+q}$$
, where *p* and *q* are constants

- (b) state the value of p and the value of q.
- (c) Hence calculate the value of N such that $a_N = \frac{4}{321}$

(2) (C1, Q6 May 2018)

(3)

(2)

28. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 8$$

$$a_{n+1} = 4(a_n - c) \qquad n \ge 1$$

where c is a constant.

(<i>a</i>)	Find an expression for a_2 , in terms of c .	(1)
Giver	n that $a_3 = 28$	
(<i>b</i>)	find the numerical value of $\sum_{i=1}^{4} a_i$	(6)

(b) find the numerical value of
$$\sum_{i=1}^{n} a_i$$

(C1, Q4 May 2019)

29. A sequence is defined by

Find the values of	$u_{n+1}=u_n-5,$	$n \ge 1$	
(a) u_2, u_3 and u_4			(2)
(b) u_{100}			(3)

 $\sum_{i=1}^{100} u_i$

 $u_1 = 3$

(c)

(3) (IAL C12, Q7, May 2018)

Kumarmaths.weebly.com 12

30. A sequence of numbers u_1, u_2, u_3, \ldots satisfies

> where *k* is a constant. Given that $u_2 = u_4$

- (*a*) find the value of *k*
- *(b)* evaluate

 $\sum_{r=1}^{4} u_r$

 $u_n = kn - 3^n$

A sequence is defined by 31.

$$u_1 = k$$
, where k is a constant
 $u_{n+1} = 4u_n - 3$, $n \ge 1$

(a) Find u_2 and u_3 in terms of k, simplifying your answers as appropriate.

Given

$$\sum_{n=1}^{3} u_n = 18$$

(*b*) find *k*.

32. A sequence u_1, u_2, u_3, \dots is defined by

$$u_1 = 1$$
$$u_{n+1} = k - \frac{8}{u_n} \qquad n \ge 1$$

Where *k* is a constant

Write down expressions for u_2 and u_3 in terms of k. *(a)*

Given that $u_3 = 6$

(*b*) find the possible values of *k*.

(4) (IAL C12, Q5, May 2019)

(3)

(IAL C12, Q7, Jan 2019)

(2)

(3)

(3)

(3)

(IAL C12, Q7, Oct 2018)

33. A sequence of numbers u_1, u_2, u_3, \ldots satisfies

 $u_n = p - qn , \qquad n \in \Box , n \ge 1$

where p and q are positive constants.

Given that $u_2 = 21$ and $u_8 = -9$

(a) find the value of p and the value of q.

Hence find

(b) the value of u_{100}

(c) the value of $\sum_{n=6}^{30} u_n$

(2)

(4)

(3) (IAL C12, Q9, Oct 2019)