Edexcel
 Pure Mathematics

 Year 2

 Year 2
 Recurrence Relations.

Edited by: K V Kumaran

1. The sequence of positive numbers $u_{1}, u_{2}, u_{3}, \ldots$, is given by

$$
u_{n+1}=\left(u_{n}-3\right)^{2}, \quad u_{1}=1
$$

(a) Find u_{2}, u_{3} and u_{4}.
(b) Write down the value of u_{20}.
2. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=3, \\
& a_{n+1}=3 a_{n}-5, \quad n \geq 1 .
\end{aligned}
$$

(a) Find the value a_{2} and the value of a_{3}.
(b) Calculate the value of $\sum_{r=1}^{5} a_{r}$.
(C1, Q4 May 2006)
3. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{gathered}
a_{1}=k \\
a_{n+1}=3 a_{n}+5, n \geq 1
\end{gathered}
$$

where k is a positive integer.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=9 k+20$.
(c) (i) Find $\sum_{r=1}^{4} a_{r}$ in terms of k.
(ii) Show that $\sum_{r=1}^{4} a_{r}$ is divisible by 10 .
4. A sequence is given by

$$
\begin{aligned}
& x_{1}=1 \\
& x_{n+1}=x_{n}\left(p+x_{n}\right)
\end{aligned}
$$

where p is a constant $(p \neq 0)$.
(a) Find x_{2} in terms of p.
(b) Show that $x_{3}=1+3 p+2 p^{2}$.

Given that $x_{3}=1$,
(c) find the value of p,
(d) write down the value of x_{2008}.
(C1, Q7 Jan 2008)
5. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ is defined by

$$
\begin{gathered}
x_{1}=1, \\
x_{n+1}=a x_{n}-3, \quad n \geq 1,
\end{gathered}
$$

where a is a constant.
(a) Find an expression for x_{2} in terms of a.
(b) Show that $x_{3}=a^{2}-3 a-3$.

Given that $x_{3}=7$,
(c) find the possible values of a.
(C1, Q5 June 2008)
6. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=k, \\
& a_{n+1}=2 a_{n}-7, \quad n \geq 1,
\end{aligned}
$$

where k is a constant.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=4 k-21$.

Given that $\sum_{r=1}^{4} a_{r}=43$,
(c) find the value of k.
(C1, Q7 June 2009)
7. A sequence of positive numbers is defined by

$$
\begin{aligned}
a_{n+1} & =\sqrt{ }\left(a_{n}^{2}+3\right), \quad n \geq 1, \\
a_{1} & =2 .
\end{aligned}
$$

(a) Find a_{2} and a_{3}, leaving your answers in surd form.
(b) Show that $a_{5}=4$.
8. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{gathered}
a_{1}=2, \\
a_{n+1}=3 a_{n}-c
\end{gathered}
$$

where c is a constant.
(a) Find an expression for a_{2} in terms of c.

Given that $\sum_{i=1}^{3} a_{i}=0$,
(b) find the value of c.
9. A sequence $a_{1}, a_{2}, a_{3}, \ldots$, is defined by

$$
\begin{aligned}
a_{1} & =k \\
a_{n+1} & =5 a_{n}+3, \quad n \geq 1
\end{aligned}
$$

where k is a positive integer.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=25 k+18$.
(c) (i) Find $\sum_{r=1}^{4} a_{r}$ in terms of k, in its simplest form.
(ii) Show that $\sum_{r=1}^{4} a_{r}$ is divisible by 6 .
10. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ is defined by

$$
\begin{aligned}
& x_{1}=1, \\
& x_{n+1}=a x_{n}+5, \quad n \geq 1,
\end{aligned}
$$

where a is a constant.
(a) Write down an expression for x_{2} in terms of a.
(b) Show that $x_{3}=a^{2}+5 a+5$.

Given that $x_{3}=41$
(c) find the possible values of a.
11. A sequence of numbers $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=3 \\
& a_{n+1}=2 a_{n}-c, \quad(n \geq 1),
\end{aligned}
$$

where c is a constant.
(a) Write down an expression, in terms of c, for a_{2}.
(b) Show that $a_{3}=12-3 c$.

Given that $\sum_{i=1}^{4} a_{i} \geq 23$,
(c) find the range of values of c.
12. A sequence $u_{1}, u_{2}, u_{3}, \ldots$, satisfies

$$
u_{n+1}=2 u_{n}-1, \quad n \geq 1 .
$$

Given that $u_{2}=9$,
(a) find the value of u_{3} and the value of u_{4},
(b) evaluate $\sum_{r=1}^{4} u_{r}$.
(C1, Q4 Jan 2013)
13. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=4, \\
& a_{n+1}=k\left(a_{n}+2\right), \quad \text { for } n \geq 1
\end{aligned}
$$

where k is a constant.
(a) Find an expression for a_{2} in terms of k.

Given that $\sum_{i=1}^{3} a_{i}=2$,
(b) find the two possible values of k.
(C1, Q4 May 2013)
14. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ is defined by

$$
\begin{aligned}
& x_{1}=1, \\
& x_{n+1}=\left(x_{n}\right)^{2}-k x_{n}, \quad n \geq 1,
\end{aligned}
$$

where k is a constant.
(a) Find an expression for x_{2} in terms of k.
(b) Show that $x_{3}=1-3 k+2 k^{2}$.

Given also that $x_{3}=1$,
(c) calculate the value of k.
(d) Hence find the value of $\sum_{n=1}^{100} x_{n}$.
(C1, Q6 May 2013_R)
15. A sequence of numbers $a_{1}, a_{2}, a_{3} \ldots$ is defined by

$$
a_{n+1}=5 a_{n}-3, \quad n \geq 1 .
$$

Given that $a_{2}=7$,
(a) find the value of a_{1}.
(b) Find the value of $\sum_{r=1}^{4} a_{r}$.
16. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{array}{ll}
a_{n+1}=4 a_{n}-3, & n \geq 1 \\
a_{1}=k, & \text { where } k \text { is a positive integer. }
\end{array}
$$

(a) Write down an expression for a_{2} in terms of k.

Given that $\sum_{r=1}^{3} a_{r}=66$
(b) find the value of k.
17. (i) A sequence $U_{1}, U_{2}, U_{3}, \ldots$ is defined by

$$
\begin{gathered}
U_{n+2}=2 U_{n+1}-U_{n}, \quad n \geq 1, \\
U_{1}=4 \text { and } U_{2}=4 .
\end{gathered}
$$

Find the value of
(a) U_{3},
(b) $\sum_{n=1}^{20} U_{n}$.
(ii) Another sequence $V_{1}, V_{2}, V_{3}, \ldots$ is defined by

$$
V_{n+2}=2 V_{n+1}-V_{n}, \quad n \geq 1,
$$

$$
V_{1}=k \text { and } V_{2}=2 k, \text { where } k \text { is a constant. }
$$

(a) Find V_{3} and V_{4} in terms of k.

Given that $\sum_{n=1}^{5} V_{n}=165$,
(b) find the value of k.
18. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
a_{1} & =4, \\
a_{n+1} & =5-k a_{n}, \quad n \geq 1,
\end{aligned}
$$

where k is a constant.
(a) Write down expressions for a_{2} and a_{3} in terms of k.

Find
(b) $\sum_{r=1}^{3}\left(1+a_{r}\right)$ in terms of k, giving your answer in its simplest form,
(c) $\sum_{r=1}^{100}\left(a_{r+1}+k a_{r}\right)$.
19. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n+1}=\frac{k\left(a_{n}+1\right)}{a_{n}}, \quad n \geqslant 1
\end{aligned}
$$

where k is a positive constant.
(a) Write down expressions for a_{2} and a_{3} in terms of k, giving your answers in their simplest form.

Given that ${ }_{r=1}^{3} a_{r}=10$
(b) find an exact value for k.
20. Given that for all positive integers n,

$$
\sum_{r=1}^{n} a_{r}=12+4 n^{2}
$$

(a) find the value of $\sum_{r=1}^{5} a_{r}$
(b) find the value of a_{6}
21. A sequence is defined by

$$
\begin{gathered}
u_{1}=3 \\
u_{n+1}=2-\frac{4}{u_{n}}, \quad n \geq 1
\end{gathered}
$$

Find the exact values of
(a) u_{2}, u_{3} and u_{4}
(b) u_{61}
(c) $\sum_{i=1}^{99} u_{i}$
(IAL C12, Q5, Jan 2014)
22. A sequence is defined by

$$
\begin{aligned}
u_{1} & =k \\
u_{n+1} & =3 u_{n}-12, \quad n \geq 1,
\end{aligned}
$$

(a) Write down fully simplified expressions for u_{2}, u_{3} and u_{4} in terms of k.

Given that $u_{4}=15$
(b) find the value of k,
(c) find $\sum_{i=1}^{4} u_{i}$, giving an exact numerical answer.
(IAL C12, Q8, Jan 2015)
23. A sequence is defined by

$$
\begin{aligned}
u_{1} & =4 \\
u_{n+1} & =\frac{2 u_{n}}{3}, \quad n \geq 1
\end{aligned}
$$

(a) Find the exact values of u_{2}, u_{3} and u_{4}.
(b) Find the value of u_{20}, giving your answer to 3 significant figures.
(c) Evaluate

$$
\begin{equation*}
12-\sum_{i=1}^{16} u_{1} \tag{2}
\end{equation*}
$$

giving your answer to 3 significant figures.
(d) Explain why $\sum_{i=1}^{N} u_{1}<12$ for all positive integer values of N.
(IAL C12, Q10, May 2015)
24. A sequence of numbers $u_{1}, u_{2}, u_{3}, \ldots$ satisfies

$$
u_{n+1}=2 u_{n}-6, \quad n \geq 1
$$

Given that $u_{1}=2$
(a) find the value of u_{3}
(b) evaluate $\sum_{i=1}^{4} u_{i}$
(IAL C12, Q1, Jan 2016)
25. A sequence is defined by

$$
\begin{gathered}
u_{1}=36 \\
u_{n+1}=\frac{2}{3} u_{n}, \quad n \geq 1
\end{gathered}
$$

(a) Find the exact simplified values of u_{2}, u_{3} and u_{4}
(b) Write down the common ratio of the sequence.
(c) Find, giving your answer to 4 significant figures, the value of u_{11}
(d) Find the exact value of $\sum_{i=1}^{6} u_{i}$
(e) Find the value of $\sum_{i=1}^{\infty} u_{i}$
26. A sequence is defined by

$$
\begin{aligned}
u_{1} & =1 \\
u_{n+1} & =2-3 u_{n} \quad n \geqslant 1
\end{aligned}
$$

(a) Find the value of u_{2} and the value of u_{3}
(b) Calculate the value of

$$
\sum_{r=1}^{4} r-u_{n}
$$

27. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
a_{1} & =4 \\
a_{n+1} & =\frac{a_{n}}{a_{n}+1}, \quad n \geqslant 1, n \in \mathbb{N}
\end{aligned}
$$

(a) Find the values of a_{2}, a_{3} and a_{4}

Write your answers as simplified fractions.
Given that

$$
\begin{equation*}
a_{n}=\frac{4}{p n+q}, \text { where } p \text { and } q \text { are constants } \tag{3}
\end{equation*}
$$

(b) state the value of p and the value of q.
(c) Hence calculate the value of N such that $a_{N}=\frac{4}{321}$
28. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
a_{1} & =8 \\
a_{n+1} & =4\left(a_{n}-c\right) \quad n \geq 1
\end{aligned}
$$

where c is a constant.
(a) Find an expression for a_{2}, in terms of c.

Given that $a_{3}=28$
(b) find the numerical value of $\sum_{i=1}^{4} a_{i}$
(C1, Q4 May 2019)
29. A sequence is defined by

$$
\begin{gathered}
u_{1}=3 \\
u_{n+1}=u_{n}-5, \quad n \geqslant 1
\end{gathered}
$$

Find the values of
(a) u_{2}, u_{3} and u_{4}
(b) u_{100}
(c)

$$
\begin{equation*}
\sum_{i=1}^{100} u_{i} \tag{3}
\end{equation*}
$$

30. A sequence of numbers $u_{1}, u_{2}, u_{3}, \ldots$ satisfies

$$
u_{n}=k n-3^{n}
$$

where k is a constant.
Given that $u_{2}=u_{4}$
(a) find the value of k
(b) evaluate

$$
\begin{equation*}
\sum_{n=1}^{4} u_{r} \tag{3}
\end{equation*}
$$

(IAL C12, Q7, Oct 2018)
31. A sequence is defined by

$$
\begin{align*}
& u_{1}=k, \text { where } k \text { is a constant } \\
& u_{n+1}=4 u_{n}-3, \quad n \geqslant 1 \tag{3}
\end{align*}
$$

(a) Find u_{2} and u_{3} in terms of k, simplifying your answers as appropriate.

Given

$$
\sum_{n=1}^{3} u_{n}=18
$$

(b) find k.
(IAL C12, Q7, Jan 2019)
32. A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
\begin{aligned}
u_{1} & =1 \\
u_{n+1} & =k-\frac{8}{u_{n}} \quad n \geq 1
\end{aligned}
$$

Where k is a constant
(a) Write down expressions for u_{2} and u_{3} in terms of k.

Given that $u_{3}=6$
(b) find the possible values of k.
33. A sequence of numbers $u_{1}, u_{2}, u_{3}, \ldots$ satisfies

$$
u_{n}=p-q n, \quad n \in \square, n \geq 1
$$

where p and q are positive constants.
Given that $u_{2}=21$ and $u_{8}=-9$
(a) find the value of p and the value of q.

Hence find
(b) the value of u_{100}
(c) the value of $\sum_{n=6}^{30} u_{n}$

