Edexcel

Pure Mathematics

Year 2

Radian Measures

Past paper questions from Core Maths 2 and IAL C12

Edited by: K V Kumaran

Past paper questions from

Edexcel Core Maths 2 and IAL C12. From Jan 2005 to May 2019.

Please check the Edexcel website for the solutions.
1.

Figure 1

Figure 1 shows the triangle $A B C$, with $A B=8 \mathrm{~cm}, A C=11 \mathrm{~cm}$ and $\angle B A C=0.7$ radians. The arc $B D$, where D lies on $A C$, is an arc of a circle with centre A and radius 8 cm . The region R, shown shaded in Figure 1, is bounded by the straight lines $B C$ and $C D$ and the arc $B D$.

Find
(a) the length of the $\operatorname{arc} B D$,
(b) the perimeter of R, giving your answer to 3 significant figures,
(c) the area of R, giving your answer to 3 significant figures.
2.

Figure 2

In Figure $2 O A B$ is a sector of a circle, radius 5 m . The chord $A B$ is 6 m long.
(a) Show that $\cos A \hat{O} B=\frac{7}{25}$.
(b) Hence find the angle $A \hat{O} B$ in radians, giving your answer to 3 decimal places.
(c) Calculate the area of the sector $O A B$.
(d) Hence calculate the shaded area.

Figure 2 shows the cross-section $A B C D$ of a small shed.
The straight line $A B$ is vertical and has length 2.12 m .
The straight line $A D$ is horizontal and has length 1.86 m .
The curve $B C$ is an arc of a circle with centre A, and $C D$ is a straight line.
Given that the size of $\angle B A C$ is 0.65 radians, find
(a) the length of the $\operatorname{arc} B C$, in m , to 2 decimal places,
(b) the area of the sector $B A C$, in m^{2}, to 2 decimal places,
(c) the size of $\angle C A D$, in radians, to 2 decimal places,
(d) the area of the cross-section $A B C D$ of the shed, in m^{2}, to 2 decimal places.

Figure 2 shows a plan of a patio. The patio $P Q R S$ is in the shape of a sector of a circle with centre Q and radius 6 m .

Given that the length of the straight line $P R$ is $6 \sqrt{ } 3 \mathrm{~m}$,
(a) find the exact size of angle $P Q R$ in radians.
(b) Show that the area of the patio $P Q R S$ is $12 \pi \mathrm{~m}^{2}$.
(c) Find the exact area of the triangle $P Q R$.
(d) Find, in m^{2} to 1 decimal place, the area of the segment $P R S$.
(e) Find, in m to 1 decimal place, the perimeter of the patio $P Q R S$.
5.

Figure 1
Figure 1 shows $A B C$, a sector of a circle with centre A and radius 7 cm .
Given that the size of $\angle B A C$ is exactly 0.8 radians, find
(a) the length of the $\operatorname{arc} B C$,
(b) the area of the sector $A B C$.

The point D is the mid-point of $A C$. The region R, shown shaded in Figure 1, is bounded by $C D, D B$ and the arc $B C$.

Find
(c) the perimeter of R, giving your answer to 3 significant figures,
(d) the area of R, giving your answer to 3 significant figures.
(C2 Q7,June 2008)
6.

Figure 3
The shape $B C D$ shown in Figure 3 is a design for a logo.
The straight lines $D B$ and $D C$ are equal in length. The curve $B C$ is an arc of a circle with centre A and radius 6 cm . The size of $\angle B A C$ is 2.2 radians and $A D=4 \mathrm{~cm}$.

Find
(a) the area of the sector $B A C$, in cm^{2},
(b) the size of $\angle D A C$, in radians to 3 significant figures,
(c) the complete area of the logo design, to the nearest cm^{2}.
(C2 Q7,Jan 2009)
7.

Figure 1
Figure 1 shows the sector $O A B$ of a circle with centre O, radius 9 cm and angle 0.7 radians.
(a) Find the length of the $\operatorname{arc} A B$.
(b) Find the area of the sector $O A B$.

The line $A C$ shown in Figure 1 is perpendicular to $O A$, and $O B C$ is a straight line.
(c) Find the length of $A C$, giving your answer to 2 decimal places.

The region H is bounded by the arc $A B$ and the lines $A C$ and $C B$.
(d) Find the area of H, giving your answer to 2 decimal places.

8.

Figure 1
The shape shown in Figure 1 is a pattern for a pendant. It consists of a sector $O A B$ of a circle centre O, of radius 6 cm , and angle $A O B=\frac{\pi}{3}$. The circle C, inside the sector, touches the two straight edges, $O A$ and $O B$, and the arc $A B$ as shown.

Find
(a) the area of the sector $O A B$,
(b) the radius of the circle C.

The region outside the circle C and inside the sector $O A B$ is shown shaded in Figure 1.
(c) Find the area of the shaded region.
(C2 Q5, May 2011)
9.

Figure 2
Figure 2 shows $A B C$, a sector of a circle of radius 6 cm with centre A. Given that the size of angle $B A C$ is 0.95 radians, find
(a) the length of the arc $B C$,
(b) the area of the sector $A B C$.

The point D lies on the line $A C$ and is such that $A D=B D$. The region R, shown shaded in Figure 2, is bounded by the lines $C D, D B$ and the arc $B C$.
(c) Show that the length of $A D$ is 5.16 cm to 3 significant figures.

Find
(d) the perimeter of R,
(e) the area of R, giving your answer to 2 significant figures.
10.

Figure 2
The triangle $X Y Z$ in Figure 1 has $X Y=6 \mathrm{~cm}, Y Z=9 \mathrm{~cm}, Z X=4 \mathrm{~cm}$ and angle $Z X Y=\alpha$. The point W lies on the line $X Y$.

The circular arc $Z W$, in Figure 1 is a major arc of the circle with centre X and radius 4 cm .
(a) Show that, to 3 significant figures, $\alpha=2.22$ radians.
(b) Find the area, in cm^{2}, of the major sector $X Z W X$.

The region enclosed by the major arc $Z W$ of the circle and the lines $W Y$ and $Y Z$ is shown shaded in Figure 1.

Calculate
(c) the area of this shaded region,
(d) the perimeter $Z W Y Z$ of this shaded region.
(C2 Q7, Jan 2013)
11.

Figure 2
Figure 2 shows a plan view of a garden.
The plan of the garden $A B C D E A$ consists of a triangle $A B E$ joined to a sector $B C D E$ of a circle with radius 12 m and centre B.

The points A, B and C lie on a straight line with $A B=23 \mathrm{~m}$ and $B C=12 \mathrm{~m}$.
Given that the size of angle $A B E$ is exactly 0.64 radians, find
(a) the area of the garden, giving your answer in m^{2}, to 1 decimal place,
(b) the perimeter of the garden, giving your answer in metres, to 1 decimal place.
(C2 Q5 ,May 2013)
12.

Figure 2
Figure 2 shows the design for a triangular garden $A B C$ where $A B=7 \mathrm{~m}, A C=13 \mathrm{~m}$ and $B C=10 \mathrm{~m}$.

Given that angle $B A C=\theta$ radians,
(a) show that, to 3 decimal places, $\theta=0.865$

The point D lies on $A C$ such that $B D$ is an arc of the circle centre A, radius 7 m .
The shaded region S is bounded by the arc $B D$ and the lines $B C$ and $D C$. The shaded region S will be sown with grass seed, to make a lawned area.

Given that 50 g of grass seed are needed for each square metre of lawn,
(b) find the amount of grass seed needed, giving your answer to the nearest 10 g .
13.

Figure 2
The shape $A B C D E A$, as shown in Figure 2, consists of a right-angled triangle $E A B$ and a triangle $D B C$ joined to a sector $B D E$ of a circle with radius 5 cm and centre B.

The points A, B and C lie on a straight line with $B C=7.5 \mathrm{~cm}$.

Angle $E A B=\frac{\pi}{2}$ radians, angle $E B D=1.4$ radians and $C D=6.1 \mathrm{~cm}$.
(a) Find, in cm^{2}, the area of the sector $B D E$.
(b) Find the size of the angle $D B C$, giving your answer in radians to 3 decimal places.
(c) Find, in cm^{2}, the area of the shape $A B C D E A$, giving your answer to 3 significant figures.
14.

Figure 2
Figure 2 shows the shape $A B C D E A$ which consists of a right-angled triangle $B C D$ joined to a sector $A B D E A$ of a circle with radius 7 cm and centre B.
A, B and C lie on a straight line with $A B=7 \mathrm{~cm}$.
Given that the size of angle $A B D$ is exactly 2.1 radians,
(a) find, in cm , the length of the $\operatorname{arc} D E A$,
(b) find, in cm , the perimeter of the shape $A B C D E A$, giving your answer to 1 decimal place.
(C2 Q5, May 2014_R)
15.

Figure 1
Figure 1 shows a sketch of a design for a scraper blade. The blade $A O B C D A$ consists of an isosceles triangle $C O D$ joined along its equal sides to sectors $O B C$ and $O D A$ of a circle with centre O and radius 8 cm . Angles $A O D$ and $B O C$ are equal. $A O B$ is a straight line and is parallel to the line $D C . D C$ has length 7 cm .
(a) Show that the angle $C O D$ is 0.906 radians, correct to 3 significant figures.
(b) Find the perimeter of $A O B C D A$, giving your answer to 3 significant figures.
(c) Find the area of $A O B C D A$, giving your answer to 3 significant figures.
16.

Figure 1
Figure 1 is a sketch representing the cross-section of a large tent $A B C D E F$.
$A B$ and $D E$ are line segments of equal length.
Angle $F A B$ and angle $D E F$ are equal.
F is the midpoint of the straight line $A E$ and $F C$ is perpendicular to $A E$.
$B C D$ is an arc of a circle of radius 3.5 m with centre at F.
It is given that

$$
\begin{aligned}
A F & =F E=3.7 \mathrm{~m} \\
B F & =F D=3.5 \mathrm{~m}
\end{aligned}
$$

angle $B F D=1.77$ radians
Find
(a) the length of the arc $B C D$ in metres to 2 decimal places,
(b) the area of the sector $F B C D$ in m^{2} to 2 decimal places,
(c) the total area of the cross-section of the tent in m^{2} to 2 decimal places.
(C2 Q4, May 2016)
17.

Diagram NOT drawn to scale

Figure 1
Figure 1 shows the plan for a pond and platform. The platform is shown shaded in the figure and is labelled $A B C D$.

The pond and platform together form a circle of radius 22 m with centre O.
$O A$ and $O D$ are radii of the circle. Point B lies on $O A$ such that the length of $O B$ is 10 m and point C lies on $O D$ such that the length of $O C$ is 10 m . The length of $B C$ is 15 m .

The platform is bounded by the $\operatorname{arc} A D$ of the circle, and the straight lines $A B, B C$ and $C D$.
Find
(a) the size of the angle $B O C$, giving your answer in radians to 3 decimal places,
(b) the perimeter of the platform to 3 significant figures,
(c) the area of the platform to 3 significant figures.
(IAL C12 Jan 2014, Q12)
18..

Figure 3
In Figure 3, the points A and B are the centres of the circles C_{1} and C_{2} respectively. The circle C_{1} has radius 10 cm and the circle C_{2} has radius 5 cm . The circles intersect at the points X and Y, as shown in the figure.

Given that the distance between the centres of the circles is 12 cm ,
(a) calculate the size of the acute angle $X A B$, giving your answer in radians to 3 significant figures,
(b) find the area of the major sector of circle C_{1}, shown shaded in Figure 3,
(c) find the area of the kite $A Y B X$.
(IAL C12 Jan 2015, Q9)
19.

Figure 1
Figure 1 shows a triangle $X Y Z$ with $X Y=10 \mathrm{~cm}, Y Z=16 \mathrm{~cm}$ and $Z X=12 \mathrm{~cm}$.
(a) Find the size of the angle $Y X Z$, giving your answer in radians to 3 significant figures.

The point A lies on the line $X Y$ and the point B lies on the line $X Z$ and $A X=B X=5 \mathrm{~cm} . A B$ is the arc of a circle with centre X.

The shaded region S, shown in Figure 1, is bounded by the lines $B Z, Z Y, Y A$ and the $\operatorname{arc} A B$.

Find
(b) the perimeter of the shaded region to 3 significant figures,
(c) the area of the shaded region to 3 significant figures.
20.

Diagram not drawn to scale

Figure 2

Figure 2 shows the design for a sail $A P B C A$.
The curved edge $A P B$ of the sail is an arc of a circle centre O and radius $r \mathrm{~m}$.
The straight edge $A C B$ is a chord of the circle.
The height $A B$ of the sail is 2.4 m .
The maximum width $C P$ of the sail is 0.4 m .
(a) Show that $r=2$
(b) Show, to 4 decimal places, that angle $A O B=1.2870$ radians.
(c) Hence calculate the area of the sail, giving your answer, in m^{2}, to 3 decimal places.
21.

Figure 1

The compound shape $A B C D A$, shown in Figure 1, consists of a triangle $A B D$ joined along its edge $B D$ to a sector $D B C$ of a circle with centre B and radius 6 cm .
The points A, B and C lie on a straight line with $A B=5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$.
Angle $D A B=1.1$ radians.
(a) Show that angle $A B D=1.20$ radians to 3 significant figures.
(b) Find the area of the compound shape, giving your answer to 3 significant figures.
22.

Figure 5
Figure 5 shows the design for a logo.
The logo is in the shape of an equilateral triangle $A B C$ of side length $2 r \mathrm{~cm}$, where r is a constant.

The points L, M and N are the midpoints of sides $A C, A B$ and $B C$ respectively.
The shaded section R, of the logo, is bounded by three curves $M N, N L$ and $L M$.
The curve $M N$ is the arc of a circle centre L, radius $r \mathrm{~cm}$.
The curve $N L$ is the arc of a circle centre M, radius $r \mathrm{~cm}$.
The curve $L M$ is the arc of a circle centre N, radius $r \mathrm{~cm}$.
Find, in cm^{2}, the area of R. Give your answer in the form $k r^{2}$, where k is an exact constant to be determined.
(IAL C12 Jan 2017, Q15)
23.

Figure 2
Figure 2 shows a sketch of a design for a triangular garden $A B C$.
The garden has sides $B A$ with length $10 \mathrm{~m}, B C$ with length 6 m and $C A$ with length 12 m .
The point D lies on $A C$ such that $B D$ is an arc of the circle centre A, radius 10 m .
A flowerbed $B C D$ is shown shaded in Figure 2.
(a) Find the size of angle $B A C$, in radians, to 4 decimal places.
(b) Find the perimeter of the flowerbed $B C D$, in m , to 2 decimal places.
(c) Find the area of the flowerbed $B C D$, in m^{2}, to 2 decimal places.
24.

Figure 3
Figure 3 shows a circle with centre O and radius $r \mathrm{~cm}$.
The points A and B lie on the circumference of this circle.
The minor $\operatorname{arc} A B$ subtends an angle θ radians at O, as shown in Figure 3 .
Given the length of minor arc $A B$ is 6 cm and the area of minor sector $O A B$ is $20 \mathrm{~cm}^{2}$,
(a) write down two different equations in r and θ.
(b) Hence find the value of r and the value of θ.
(IAL C12 Oct 2017, Q8)
25.

Figure 1
Figure 1 shows a semicircle with centre O and radius $3 \mathrm{~cm} . X Y$ is the diameter of this semicircle. The point Z is on the circumference such that angle $X O Z=1.3$ radians.
The shaded region enclosed by the chord $X Z$, the arc $Z Y$ and the diameter $X Y$ is a template for a badge.

Find, giving each answer to 3 significant figures,
(a) the length of the chord $X Z$,
(b) the perimeter of the template $X Z Y X$,
(c) the area of the template.
26.

Figure 2
Figure 2 shows a plan for a garden.
The garden consists of two identical rectangles of width $y \mathrm{~m}$ and length $x \mathrm{~m}$, joined to a sector of a circle with radius $x \mathrm{~m}$ and angle 0.8 radians, as shown in Figure 2.

The area of the garden is $60 \mathrm{~m}^{2}$.
(a) Show that the perimeter, $P \mathrm{~m}$, of the garden is given by

$$
P=2 x+\frac{120}{x}
$$

(b) Use calculus to find the exact minimum value for P, giving your answer in the form $a \sqrt{b}$, where a and b are integers.
(c) Justify that the value of P found in part (b) is the minimum.
27.

Figure 1
Figure 1 shows the design for a shop sign $A B C D A$.
The sign consists of a triangle $A O D$ joined to a sector of a circle $D O B C D$ with radius 1.8 m and centre O.

The points A, B and O lie on a straight line.
Given that $A D=3.9 \mathrm{~m}$ and angle $B O D$ is 0.84 radians,
(a) calculate the size of angle $D A O$, giving your answer in radians to 3 decimal places.
(b) Show that, to one decimal place, the length of $A O$ is 4.9 m .
(c) Find, in m^{2}, the area of the shop sign, giving your answer to one decimal place.
(d) Find, in m , the perimeter of the shop sign, giving your answer to one decimal place.
(IAL C12 Jan 2019, Q10)
28.

Figure 3

The design for a logo, $A B C D E A$, is shown shaded in Figure 3.
The logo consists of a sector $O B C D O$ of a circle with centre O, joined to a sector $O A E O$ of a smaller circle, also with centre O.

Given that the size of the acute angle $A O E$ is $\frac{\pi}{6}$ radians, the length of arc $A E$ is $\pi \mathrm{cm}$ and $O B=2 \times O A$, find the exact value of
(a) the length $O A$,
(b) the area of the logo,
(c) the perimeter of the logo.

