Edexcel

Pure Mathematics

Year 2

Parametric Differentiation

Past paper questions from Core Maths 4 and IAL C34

Edited by: K V Kumaran

1. A curve has parametric equations

$$
x=2 \cot t, \quad y=2 \sin ^{2} t, \quad 0<t \leq \frac{\pi}{2} .
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of the parameter t.
(b) Find an equation of the tangent to the curve at the point where $t=\frac{\pi}{4}$.
(c) Find a cartesian equation of the curve in the form $y=\mathrm{f}(x)$. State the domain on which the curve is defined.
(C4 June 2005, Q6.)
2.

Figure 2

The curve shown in Figure .. parametric equations

$$
x=\sin t, \quad y=\sin \left(t+\frac{\pi}{6}\right), \quad-\frac{\pi}{2}<t<\frac{\pi}{2} .
$$

(a) Find an equation of the tangent to the curve at the point where $t=\frac{\pi}{6}$.
(b) Show that a cartesian equation of the curve is

$$
y=\frac{\sqrt{ } 3}{2} x+\frac{1}{2} \sqrt{ }\left(1-x^{2}\right), \quad-1<x<1 .
$$

(C4 June 2006, Q4.)
3. A curve has parametric equations

$$
x=7 \cos t-\cos 7 t, \quad y=7 \sin t-\sin 7 t, \quad \frac{\pi}{8}<t<\frac{\pi}{3} .
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t. You need not simplify your answer.
(b) Find an equation of the normal to the curve at the point where $t=\frac{\pi}{6}$.

Give your answer in its simplest exact form.
(C4 Jan 2007, Q3.)
4. A curve has parametric equations

$$
x=\tan ^{2} t, \quad y=\sin t, \quad 0<t<\frac{\pi}{2} .
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t. You need not simplify your answer.
(3)
(b) Find an equation of the tangent to the curve at the point where $t=\frac{\pi}{4}$.

Give your answer in the form $y=a x+b$, where a and b are constants to be determined.
(c) Find a cartesian equation of the curve in the form $y^{2}=\mathrm{f}(x)$.
(C4 June 2007, Q6.)
5.

Figure 3
The curve C shown in Figure 3 has parametric equations

$$
x=t^{3}-8 t, \quad y=t^{2}
$$

where t is a parameter. Given that the point A has parameter $t=-1$,
(a) find the coordinates of A.

The line l is the tangent to C at A.
(b) Show that an equation for l is $2 x-5 y-9=0$.

The line l also intersects the curve at the point B.
(c) Find the coordinates of B.
6.

Figure 2
Figure 2 shows a sketch of the curve with parametric equations

$$
x=2 \cos 2 t, \quad y=6 \sin t, \quad 0 \leq t \leq \frac{\pi}{2} .
$$

(a) Find the gradient of the curve at the point where $t=\frac{\pi}{3}$.
(b) Find a Cartesian equation of the curve in the form

$$
y=\mathrm{f}(x), \quad-k \leq x \leq k,
$$

Stating the value of the constant k.
(c) Write down the range of $\mathrm{f}(x)$.
7. A curve C has parametric equations

$$
x=\sin ^{2} t, y=2 \tan t, 0 \leq t<\frac{\pi}{2} .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

The tangent to C at the point where $t=\frac{\pi}{3}$ cuts the x-axis at the point P.
(b) Find the x-coordinate of P.
8. The curve C has parametric equations

$$
x=\ln t, \quad y=t^{2}-2, \quad t>0 .
$$

Find
(a) An equation of the normal to C at the point where $t=3$,
(b) A Cartesian equation of C.
(C4 Jan 2011, Q6.)
9.

Figure 3
Figure 3 shows part of the curve C with parametric equations

$$
x=\tan \theta, \quad y=\sin \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

The point P lies on C and has coordinates $\left(\sqrt{ } 3, \frac{1}{2} \sqrt{ } 3\right)$.
(a) Find the value of θ at the point P.

The line l is a normal to C at P. The normal cuts the x-axis at the point Q.
(b) Show that Q has coordinates $(k \sqrt{ } 3,0)$, giving the value of the constant k.
10.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
\begin{equation*}
x=4 \sin \left(t+\frac{\pi}{6}\right), \quad y=3 \cos 2 t, \quad 0 \leq t<2 \pi . \tag{3}
\end{equation*}
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) Find the coordinates of all the points on C where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(C4 Jan 2012, Q5.)
11.

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$
x=\sqrt{3} \sin 2 t, \quad y=4 \cos ^{2} t, \quad 0 \leq t \leq \pi .
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \sqrt{ } 3 \tan 2 t$, where k is a constant to be determined.
(b) Find an equation of the tangent to C at the point where $t=\frac{\pi}{3}$.

Give your answer in the form $y=a x+b$, where a and b are constants.
(c) Find a Cartesian equation of C.
12.

Figure 2
Figure 2 shows a sketch of part of the curve C with parametric equations

$$
x=1-\frac{1}{2} t, \quad y=2^{t}-1 .
$$

The curve crosses the y-axis at the point A and crosses the x-axis at the point B.
(a) Show that A has coordinates $(0,3)$.
(b) Find the x-coordinate of the point B.
(c) Find an equation of the normal to C at the point A.
13. A curve C has parametric equations

$$
x=2 \sin t, \quad y=1-\cos 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point where $t=\frac{\pi}{6}$.
(b) Find a cartesian equation for C in the form

$$
\mathrm{y}=\mathrm{f}(x),-k \leq x \leq k,
$$

stating the value of the constant k.
(c) Write down the range of $\mathrm{f}(x)$.
(C4 June 2013, Q4)
14.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=27 \sec ^{3} t, \quad y=3 \tan t, \quad 0 \leq t \leq \frac{\pi}{3}
$$

(a) Find the gradient of the curve C at the point where $t=\frac{\pi}{6}$.
(b) Show that the cartesian equation of C may be written in the form

$$
y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}, \quad a \leq x \leq b
$$

stating values of a and b.
15.

Figure 3
Figure 3 shows a sketch of the curve C with parametric equations

$$
x=4 \cos \left(t+\frac{\pi}{6}\right), \quad y=2 \sin t, \quad 0 \leq t \leq 2 \pi
$$

(a) Show that

$$
\begin{equation*}
x+y=2 \sqrt{ } 3 \cos t \tag{3}
\end{equation*}
$$

(b) Show that a cartesian equation of C is

$$
(x+y)^{2}+a y^{2}=b
$$

where a and b are integers to be determined.
(C4 June 2014, Q5)
16.

Figure 3

The curve shown in Figure 3 has parametric equations

$$
x=t-4 \sin t, y=1-2 \cos t, \quad-\frac{2 \pi}{3} \leq t \leq \frac{2 \pi}{3}
$$

The point A, with coordinates $(k, 1)$, lies on the curve.
Given that $k>0$
(a) find the exact value of k,
(b) find the gradient of the curve at the point A.

There is one point on the curve where the gradient is equal to $-\frac{1}{2}$.
(c) Find the value of t at this point, showing each step in your working and giving your answer to 4 decimal places.
[Solutions based entirely on graphical or numerical methods are not acceptable.]
(C4 June 2014_R, Q8)
17. A curve C has parametric equations

$$
x=4 t+3, \quad y=4 t+8+\frac{5}{2 t}, \quad t \neq 0 .
$$

(a) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point on C where $t=2$, giving your answer as a fraction in its simplest form.
(b) Show that the Cartesian equation of the curve C can be written in the form

$$
y=\frac{x^{2}+a x+b}{x-3}, \quad x \neq 3,
$$

where a and b are integers to be determined.
(C4 June 2015, Q5)
18.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=4 \tan t, \quad y=5 \sqrt{3} \sin 2 t, \quad 0 \leq t<\frac{\pi}{2} .
$$

The point P lies on C and has coordinates $\left(4 \sqrt{3}, \frac{15}{2}\right)$.
(a) Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point P.

Give your answer as a simplified surd.
The point Q lies on the curve C, where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(b) Find the exact coordinates of the point Q.
19. The curve C has parametric equations

$$
x=3 t-4, y=5-\frac{6}{t}, t>0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t

The point P lies on C where $t=\frac{1}{2}$
(b) Find the equation of the tangent to C at the point P. Give your answer in the form $y=p x+q$, where p and q are integers to be determined.
(c) Show that the cartesian equation for C can be written in the form

$$
\begin{equation*}
y=\frac{a x+b}{x+4}, \quad x>-4 \tag{3}
\end{equation*}
$$

where a and b are integers to be determined.
20.

Diagram not drawn to scale

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=1+t-5 \sin t, \quad y=2-4 \cos t, \quad-\pi \leqslant t \leqslant \pi
$$

The point A lies on the curve C.
Given that the coordinates of A are $(k, 2)$, where $k>0$
(a) find the exact value of k, giving your answer in a fully simplified form.
(b) Find the equation of the tangent to C at the point A. Give your answer in the form $y=p x+q$, where p and q are exact real values.
(C4 June 2018, Q5)
21.

The curve C has parametric equations

$$
x=-3+6 \sin \theta \quad y=4 \sqrt{3} \cos 2 \theta \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}
$$

where θ is a parameter.
(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.

The curve C cuts the y-axis at the point A.
The line l is the normal to C at the point A.
(b) Show that an equation for l is

$$
\begin{equation*}
\sqrt{3} x-4 y+8 \sqrt{3}=0 \tag{6}
\end{equation*}
$$

The line l intersects the curve C again at the point B.
(c) Find the coordinates of B. Give your answer in the form $(p, q \sqrt{3})$, where p and q are rational constants.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
(C4 June 2019, Q7)
22. The curve C has parametric equations

$$
x=10 \cos 2 t, \quad y=6 \sin t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

The point A with coordinates $(5,3)$ lies on C.
(a) Find the value of t at the point A.
(b) Show that an equation of the normal to C at A is

$$
\begin{equation*}
3 y=10 x-41 \tag{6}
\end{equation*}
$$

The normal to C at A cuts C again at the point B.
(c) Find the exact coordinates of B.
23.

Figure 3
Figure 3 shows a sketch of part of the curve with parametric equations

$$
x=t^{2}+2 t, \quad y=t^{3}-9 t, \quad t \in \square
$$

The curve cuts the x-axis at the origin and at the points A and B as shown in Figure 3.
(a) Find the coordinates of point A and show that point B has coordinates $(15,0)$.
(b) Show that the equation of the tangent to the curve at B is $9 x-4 y-135=0$.

The tangent to the curve at B cuts the curve again at the point X.
(c) Find the coordinates of X.
(IAL C34 June 2015, Q9)
24. A curve C has parametric equations

$$
x=6 \cos 2 t, \quad y=2 \sin t, \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda \operatorname{cosec} t$, giving the exact value of the constant λ.
(b) Find an equation of the normal to C at the point where $t=\frac{\pi}{3}$

Give your answer in the form $y=m x+c$, where m and c are simplified surds.
The cartesian equation for the curve C can be written in the form

$$
x=\mathrm{f}(y),-k<y<k
$$

where $\mathrm{f}(y)$ is a polynomial in y and k is a constant.
(c) Find $\mathrm{f}(y)$.
(d) State the value of k.
25.

Figure 4
The curve C shown in Figure 4 has parametric equations

$$
x=1+\sqrt{3} \tan , \quad y=5 \sec , \quad \overline{2} \ll \frac{1}{2}
$$

The curve C crosses the y-axis at A and has a minimum turning point at B, as shown in Figure 4.
(a) Find the exact coordinates of A.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin$, giving the exact value of the constant.
(c) Find the coordinates of B.
(d) Show that the cartesian equation for the curve C can be written in the form

$$
y=k \sqrt{\left(x^{2}-2 x+4\right)}
$$

where k is a simplified surd to be found.
26.

Figure 6

Figure 6 shows a sketch of the curve C with parametric equations

$$
x=8 \cos ^{3} \theta, \quad y=6 \sin ^{2} \theta, \quad 0 \leqslant \theta \leqslant \frac{-}{2}
$$

Given that the point P lies on C and has parameter $\theta=\frac{-}{3}$
(a) find the coordinates of P.

The line l is the normal to C at P.
(b) Show that an equation of l is $y=x+3.5$
27. A curve C has parametric equations

$$
x=\frac{3}{2} t-5, \quad y=4-\frac{6}{t} \quad t \neq 0
$$

(a) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $t=3$, giving your answer as a fraction in its simplest form.
(b) Show that a cartesian equation of C can be expressed in the form

$$
y=\frac{a x+b}{x+5} \quad x \neq k
$$

where a, b and k are integers to be found.
(IAL C34 June 2018, Q2)
28.

Figure 2
Figure 2 shows a sketch of part of the curve C with parametric equations

$$
x=\frac{20 t}{2 t+1} \quad y=t(t-4), \quad t>0
$$

The curve cuts the x-axis at the point P.
(a) Find the x coordinate of P.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(t-A)(2 t+1)^{2}}{B}$ where A and B are constants to be found.
(c) (i) Make t the subject of the formula

$$
x=\frac{20 t}{2 t+1}
$$

(ii) Hence find a cartesian equation of the curve C. Write your answer in the form

$$
y=\mathrm{f}(x), \quad 0<x<k
$$

where $\mathrm{f}(x)$ is a single fraction and k is a constant to be found.
29.

Figure 3
The curve C shown in Figure 3 has parametric equations

$$
x=3 \cos t, \quad y=9 \sin 2 t, \quad 0 \leqslant t \leqslant 2 \pi
$$

The curve C meets the x-axis at the origin and at the points A and B, as shown in Figure 3 .
(a) Write down the coordinates of A and B.
(b) Find the values of t at which the curve passes through the origin.
(c) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t, and hence find the gradient of the curve when $t=\frac{\overline{6}}{}$
(d) Show that the cartesian equation for the curve C can be written in the form

$$
y^{2}=a x^{2}\left(b-x^{2}\right)
$$

where a and b are integers to be determined.
(IAL C34 Jan 2018, Q11)
30. A curve has parametric equations

$$
x=t^{2}-t, \quad y=\frac{4 t}{1 t} \quad t \neq 1
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t, giving your answer as a simplified fraction.
(b) Find an equation for the tangent to the curve at the point P where $t=-1$, giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.

The tangent to the curve at P cuts the curve at the point Q.
(c) Use algebra to find the coordinates of Q.
(IAL C34 Jan 2019, Q8)
31.

- A curve C has parametric equations

$$
x=\sqrt{3} \tan \theta, \quad y=\sec ^{2} \theta, \quad 0 \leqslant \theta \leqslant \frac{\pi}{3}
$$

The cartesian equation of C is

$$
y=\mathrm{f}(x), \quad 0 \leqslant x \leqslant k, \quad \text { where } k \text { is a constant }
$$

(a) State the value of k.
(b) Find $\mathrm{f}(x)$ in its simplest form.
(c) Hence, or otherwise, find the gradient of the curve at the point where $\theta=\frac{\pi}{6}$
(IAL C34 June 2019, Q3)
32. The curve C_{1} has parametric equations

$$
x=t^{2}-1, \quad y=t^{3}-t \quad t \in \mathbb{R}
$$

The line l is the normal to C_{1} at the point where $t=2$
(a) Show that an equation of l is

$$
\begin{equation*}
4 x+11 y-78=0 \tag{5}
\end{equation*}
$$

The curve C_{2} has parametric equations

$$
x=12.5+a \cos t, \quad y=15+a \sin t \quad 0 \leq t<2 \pi
$$

where a is a constant.
(b) Find the range of values of a for which the curve C_{2} does not cross or touch the line l.
(IAL C34 Nov 2019, Q14)

