Edexcel Pure Mathematics Year 2 Numerical Methods

Past paper questions from Core Maths 3 and IAL C34

Edited by: K V Kumaran

kumarmaths.weebly.com

1.

$$f(x) = 3e^x - \frac{1}{2} \ln x - 2, \quad x > 0.$$

(*a*) Differentiate to find f '(x).

The curve with equation y = f(x) has a turning point at *P*. The *x*-coordinate of *P* is α . (*b*) Show that $\alpha = \frac{1}{6}e^{-\alpha}$.

The iterative formula

 $x_{n+1} = \frac{1}{6} e^{-x_n}, x_0 = 1,$

is used to find an approximate value for α .

- (c) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimal places.
- (d) By considering the change of sign of f'(x) in a suitable interval, prove that $\alpha = 0.1443$ correct to 4 decimal places.

(2) [C3 2005 June Q4]

2.

$$\mathbf{f}(x) = 2x^3 - x - 4.$$

(*a*) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}.$$

The equation $2x^3 - x - 4 = 0$ has a root between 1.35 and 1.4. (*b*) Use the iteration formula

$$x_{n+1}=\sqrt{\left(\frac{2}{x_n}+\frac{1}{2}\right)},$$

with $x_0 = 1.35$, to find, to 2 decimal places, the value of x_1 , x_2 and x_3 .

The only real root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.392$, to 3 decimal places.

(3) [C3 2006 Jan Q5]

(2)

(2)

(3)

(3)

Figure 2 shows part of the curve with equation

$$y = (2x - 1) \tan 2x, \quad 0 \le x < \frac{\pi}{4}$$

The curve has a minimum at the point *P*. The *x*-coordinate of *P* is *k*.

(*a*) Show that *k* satisfies the equation

$$4k + \sin 4k - 2 = 0.$$

(6)

The iterative formula

 $x_{n+1} = \frac{1}{4} (2 - \sin 4x_n), \quad x_0 = 0.3,$

is used to find an approximate value for *k*.

(b) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimals places.

(3)

(c) Show that k = 0.277, correct to 3 significant figures.

(2)

4. The function f is defined by

 $f: x \mapsto \ln (4-2x), x < 2 \text{ and } x \in \mathbb{R}.$

(a) Show that the inverse function of f is defined by

$$f^{-1}: x \mapsto 2 - \frac{1}{2}e^x$$

and write down the domain of f^{-1} .

- (b) Write down the range of f^{-1} .
- (c) Sketch the graph of $y = f^{-1}(x)$. State the coordinates of the points of intersection with the *x* and *y* axes.

The graph of y = x + 2 crosses the graph of $y = f^{-1}(x)$ at x = k. The iterative formula

$$x_{n+1} = -\frac{1}{2}e^{x_n}, \quad x_0 = -0.3,$$

is used to find an approximate value for k.

- (d) Calculate the values of x_1 and x_2 , giving your answer to 4 decimal places.
- (*e*) Find the values of *k* to 3 decimal places.

(2) [C3 2007 Jan Q6]

5.

$$f(x) = -x^3 + 3x^2 - 1.$$

(*a*) Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt{\left(\frac{1}{3-x}\right)}.$$

(*b*) Starting with $x_1 = 0.6$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{1}{3-x_n}\right)}$$

to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places.

(2)

(2)

(c) Show that x = 0.653 is a root of f(x) = 0 correct to 3 decimal places.

(3)

[C3 2007 June Q4]

4

(4)

(1)

(4)

(2)

6.

$$f(x) = \ln (x + 2) - x + 1, \quad x > -2, x \in \mathbb{R}$$

(a) Show that there is a root of f(x) = 0 in the interval 2 < x < 3.

(b) Use the iterative formula

 $x_{n+1} = \ln (x_n + 2) + 1, \quad x_0 = 2.5,$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 5 decimal places.

(3)

(2)

(c) Show that x = 2.505 is a root of f(x) = 0 correct to 3 decimal places.

(2)

[C3 2008 Jan Q3]

(a) Show that f(x) = 0 has a root, α , between x = 1.4 and x = 1.45.

(2)

(3)

(b) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, \quad x \neq 0.$$

 $f(x) = 3x^3 - 2x - 6$.

(c) Starting with $x_0 = 1.43$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(3)

(d) By choosing a suitable interval, show that $\alpha = 1.435$ is correct to 3 decimal places.

(3)

[C3 2008 June Q7]

$$f(x) = 3xe^x - 1.$$

The curve with equation y = f(x) has a turning point *P*. (*a*) Find the exact coordinates of *P*.

The equation f(x) = 0 has a root between x = 0.25 and x = 0.3.

(*b*) Use the iterative formula

$$x_{n+1} = \frac{1}{3} e^{-x_n}$$
.

with $x_0 = 0.25$ to find, to 4 decimal places, the values of x_1 , x_2 and x_3 .

(c) By choosing a suitable interval, show that a root of f(x) = 0 is x = 0.2576 correct to 4 decimal places.

Figure 1

shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the *x*-axis at the point *A* where $x = \alpha$.

To find an approximation to α , the iterative formula

$$x_{n+1} = \frac{2}{(x_n)^2} + 2$$
 is used.

(*a*) Taking $x_0 = 2.5$, find the values of x_1 , x_2 , x_3 and x_4 . Give your answers to 3 decimal places where appropriate.

(3)

(b) Show that $\alpha = 2.359$ correct to 3 decimal places.

(3) [C3 2009 June Q1]

$$x_1, x_2$$
 and x_3 .
 $x_3 = 0$ is $x = 0.2576$ co

kumarmaths.weebly.com

(5)

(3)

(3)

10.

11.

$$f(x) = x^3 + 2x^2 - 3x - 11$$

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$$

The equation f(x) = 0 has one positive root α .

The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ is used to find an approximation to α .

(b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 .

(c) Show that $\alpha = 2.057$ correct to 3 decimal places.

- (3) [C3 2010 Jan Q2]
- $f(x) = 4 \operatorname{cosec} x 4x + 1$, where x is in radians.
- (*a*) Show that there is a root α of f(x) = 0 in the interval [1.2, 1.3].
- (*b*) Show that the equation f(x) = 0 can be written in the form

$$x = \frac{1}{\sin x} + \frac{1}{4}$$

(c) Use the iterative formula

$$x_{n+1} = \frac{1}{\sin x_n} + \frac{1}{4}, \quad x_0 = 1.25,$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(*d*) By considering the change of sign of f(x) in a suitable interval, verify that $\alpha = 1.291$ correct to 3 decimal places.

(2)

(3)

[C3 2010 June Q3]

(2)

(3)

(2)

(2)

Figure 1 shows a sketch of part of the curve with equation y = f(x), where

$$f(x) = (8 - x) \ln x, \quad x > 0.$$

The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure

(a) Write down the coordinates of A and the coordinates of B.

(b) Find
$$f'(x)$$
.

(c) Show that the x-coordinate of Q lies between 3.5 and 3.6

(d) Show that the x-coordinate of Q is the solution of

$$x = \frac{8}{1 + \ln x}$$

(3)

(2)

(3)

(2)

To find an approximation for the x-coordinate of Q, the iteration formula

$$x_{n+1} = \frac{8}{1+\ln x_n}$$

is used.

(e) Taking $x_0 = 3.55$, find the values of x_1 , x_2 and x_3 . Give your answers to 3 decimal places.

> (3) [C3 2011 Jan Q5]

- $f(x) = 2 \sin(x^2) + x 2, \qquad 0 \le x < 2\pi.$
- (a) Show that f (x) = 0 has a root α between x = 0.75 and x = 0.85.

The equation f(x) = 0 can be written as $x = [\arcsin(1 - 0.5x)]^{\frac{1}{2}}$.

(b) Use the iterative formula

13.

14.

$$x_{n+1} = \left[\arcsin\left(1 - 0.5x_n\right) \right]^{\frac{1}{2}}, \quad x_0 = 0.8,$$

to find the values of x_1 , x_2 and x_3 , giving your answers to 5 decimal places.

(c) Show that $\alpha = 0.80157$ is correct to 5 decimal places.

[C3 2011 June Q2] $f(x) = x^2 - 3x + 2\cos(\frac{1}{2}x), \qquad 0 \le x \le \pi.$

(a) Show that the equation f(x) = 0 has a solution in the interval 0.8 < x < 0.9.

The curve with equation y = f(x) has a minimum point *P*.

(b) Show that the x-coordinate of P is the solution of the equation

$$x=\frac{3+\sin\left(\frac{1}{2}x\right)}{2}.$$

(c) Using the iteration formula

$$x_{n+1} = \frac{3 + \sin\left(\frac{1}{2}x_n\right)}{2}, \quad x_0 = 2,$$

find the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(4)

(2)

(3)

(3)

(2)

(d) By choosing a suitable interval, show that the x-coordinate of P is 1.9078 correct to 4 decimal places.(3)

[C3 2012Jan Q6]

$$f(x) = x^2 - 3x + 2\cos(\frac{1}{2}x),$$

3

15.

$$f(x) = x^3 + 3x^2 + 4x - 12$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \quad x \neq -3$$

The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2.

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, \quad n \ge 0,$$

with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3 .

(3) The root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places.

(3)

[C3 2012June Q2]

16.

$$g(x) = e^{x-1} + x - 6$$

(a) Show that the equation g(x) = 0 can be written as

$$x = \ln(6 - x) + 1, \qquad x < 6.$$
 (2)

The root of g(x) = 0 is α .

The iterative formula

 $x_{n+1} = \ln (6 - x_n) + 1, \quad x_0 = 2.$

is used to find an approximate value for α .

(b) Calculate the values of x_1 , x_2 and x_3 to 4 decimal places.

(c) By choosing a suitable interval, show that $\alpha = 2.307$ correct to 3 decimal places.

(3) [C3 2013Jan Q2]

(3)

(3)

$$f(x) = 25x^2e^{2x} - 16, \qquad x \in \Box$$

(a) Using calculus, find the exact coordinates of the turning points on the curve with equation y = f(x).

(5)

(1)

(b) Show that the equation f(x) = 0 can be written as $x = \pm \frac{4}{5}e^{-x}$.

The equation f(x) = 0 has a root α , where $\alpha = 0.5$ to 1 decimal place.

(c) Starting with $x_0 = 0.5$, use the iteration formula

$$x_{n+1}=\frac{4}{5}e^{-x_n}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(d) Give an accurate estimate for α to 2 decimal places, and justify your answer.

(2)

[C3 2013June Q2]

Figure 2 shows a sketch of part of the curve with equation y = f(x) where

$$f(x) = (x^2 + 3x + 1) e^{x^2}$$

The curve cuts the *x*-axis at points *A* and *B* as shown in Figure 2.

(*a*) Calculate the *x*-coordinate of *A* and the *x*-coordinate of *B*, giving your answers to 3 decimal places.

(2)

(b) Find f'(x).

kumarmaths.weebly.com 11

18.

(3)

The curve has a minimum turning point *P* as shown in Figure 2.

(c) Show that the *x*-coordinate of *P* is the solution of

$$x = -\frac{3(2x^2 + 1)}{2(x^2 + 2)}$$
(3)

(*d*) Use the iteration formula

19.

$$x_{n+1} = -\frac{3(2x_n^2 + 1)}{2(x_n^2 + 2)}$$
, with $x_0 = -2.4$,

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places. (3) The *x*-coordinate of *P* is α .

(e) By choosing a suitable interval, prove that $\alpha = -2.43$ to 2 decimal places.

(2)

Figure 2 shows a sketch of part of the curve with equation

$$y = 2\cos\left(\frac{1}{2}x^{2}\right) + x^{3} - 3x - 2$$

The curve crosses the x-axis at the point Q and has a minimum turning point at R.

(*a*) Show that the *x* coordinate of *Q* lies between 2.1 and 2.2.

(2)

(b) Show that the x coordinate of R is a solution of the equation

$$x = \sqrt{1 + \frac{2}{3}x\sin\left(\frac{1}{2}x^2\right)}$$

Using the iterative formula

$$x_{n+1} = \sqrt{1 + \frac{2}{3}x_n \sin\left(\frac{1}{2}x_n^2\right)}, \qquad x_0 = 1.3$$

(c) find the values of x_1 and x_2 to 3 decimal places.

(2) [C3 2014June Q6]

20. A curve *C* has equation $y = e^{4x} + x^4 + 8x + 5$. (*a*) Show that the *x* coordinate of any turning point of *C* satisfies the equation

$$x^3 = -2 - e^{4x}$$

- (b) On a pair of axes, sketch, on a single diagram, the curves with equations
 - (i) $y = x^3$,
 - (ii) $y = -2 e^{4x}$

On your diagram give the coordinates of the points where each curve crosses the *y*-axis and state the equation of any asymptotes.

(c) Explain how your diagram illustrates that the equation $x^3 = -2 - e^{4x}$ has only one root.

The iteration formula

$$x_{n+1} = \left(-2 - e^{4x_n}\right)^{\frac{1}{3}}, \quad x_0 = -1$$

can be used to find an approximate value for this root.

(d) Calculate the values of x_1 and x_2 , giving your answers to 5 decimal places.

(2)

(e) Hence deduce the coordinates, to 2 decimal places, of the turning point of the curve C.

(2)

[C3 2014June Q2_R]

(4)

(4)

(1)

(3)

Figure 1

Figure 1 is a sketch showing part of the curve with equation $y = 2^{x+1} - 3$ and part of the line with equation y = 17 - x.

The curve and the line intersect at the point *A*.

(*a*) Show that the *x*-coordinate of *A* satisfies the equation

$$x = \frac{\ln (20 - x)}{\ln 2} -1.$$
 (3)

(*b*) Use the iterative formula

$$x_{n+1} = \frac{\ln (20 - x_n)}{\ln 2} -1, \qquad x_0 = 3,$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(c) Use your answer to part (b) to deduce the coordinates of the point A, giving your answers to one decimal place.

(2) [C3 2015 June Q6]

Figure 1 shows a sketch of part of the curve with equation y = g(x), where

$$g(x) = |4e^{2x} - 25|, \qquad x \in \mathbb{R}.$$

The curve cuts the *y*-axis at the point *A* and meets the *x*-axis at the point *B*. The curve has an asymptote y = k, where *k* is a constant, as shown in Figure 1.

(a) Find, giving each answer in its simplest form,

- (i) the *y* coordinate of the point *A*,
- (ii) the exact x coordinate of the point B,
- (iii) the value of the constant *k*.

The equation g(x) = 2x + 43 has a positive root at $x = \alpha$.

(*b*) Show that
$$\alpha$$
 is a solution of $x = \frac{1}{2} \ln \left(\frac{1}{2} x + 17 \right)$.

The iteration formula

$$x_{n+1} = \frac{1}{2} \ln \left(\frac{1}{2} x_n + 17 \right)$$

can be used to find an approximation for α .

(c) Taking $x_0 = 1.4$, find the values of x_1 and x_2 . Give each answer to 4 decimal places.

(2)

(5)

(2)

(d) By choosing a suitable interval, show that $\alpha = 1.437$ to 3 decimal places.

(2)

[C3 2016 June Q4]

x

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$y = 2\ln(2x+5) - \frac{3x}{2}$$
, $x > -2.5$

The point *P* with *x* coordinate -2 lies on *C*.

(a) Find an equation of the normal to C at P. Write your answer in the form ax + by = c, where a, b and c are integers.

The normal to C at P cuts the curve again at the point Q, as shown in Figure 2.

(b) Show that the x coordinate of Q is a solution of the equation

$$x = \frac{20}{11}\ln(2x+5) - 2 \tag{3}$$

The iteration formula

$$x_{n+1} = \frac{20}{11} \ln(2x_n + 5) - 2$$

can be used to find an approximation for the x coordinate of Q.

(c) Taking $x_1 = 2$, find the values of x_2 and x_3 , giving each answer to 4 decimal places.

(2)

(5)

[C3 2017 June Q5]

$f(x) = 2x^3 + x - 10$

(a) Show that the equation f(x) = 0 has a root α in the interval [1.5, 2].

The only real root of f(x) = 0 is α .

The iterative formula

$$x_{n+1} = \left(5 - \frac{1}{2}x_n\right)^{\frac{1}{3}}, \qquad x_0 = 1.5$$

can be used to find an approximate value for α .

(b) Calculate x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(c) By choosing a suitable interval, show that $\alpha = 1.6126$ correct to 4 decimal places.

(2)

(3)

[2014 June, IAL Q1]

$f(x) = -x^3 + 4x^2 - 6$

х

- (a) Show that the equation f(x) = 0 has a root between x = 1 and x = 2
- (b) Show that the equation f(x) = 0 can be rewritten as

$$=\sqrt{\left(\frac{6}{4-x}\right)}$$

(c) Starting with $x_1 = 1.5$ use the iteration $x_{n+1} = \sqrt{\left(\frac{6}{4-x_n}\right)}$ to calculate the values of x_2 , x_3 and x_4 giving all your answers to 4 decimal places.

(3)

(2)

(*d*) Using a suitable interval, show that 1.572 is a root of f(x) = 0 correct to 3 decimal places.

(2)

[2016 Jan, IAL Q5]

(2)

(2)

Figure 3

Figure 3 shows a sketch of part of the curve *C* with equation

$$y = \frac{x^2 \ln x}{3} - 2x + 4, \ x > 0$$

Point *A* is the minimum turning point on the curve.

(a) Show, by using calculus, that the x coordinate of point A is a solution of

$$x = \frac{6}{1 + \ln(x^2)}$$

(5)

(*b*) Starting with $x_0 = 2.27$, use the iteration

$$x_{n+1} = \frac{6}{1 + \ln(x_n^2)}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(c) Use your answer to part (b) to deduce the coordinates of point A to one decimal place.

(2)

[2015 Jan, IAL Q10]

27. (a) Given that $-\frac{\pi}{2} < g(x) < \frac{\pi}{2}$, sketch the graph of y = g(x) where

$$g(x) = \arctan x, \qquad x \in \mathbb{R}$$

(*b*) Find the exact value of *x* for which

$$3g(x+1) - \pi = 0$$

The equation $\arctan x - 4 + \frac{1}{2}x = 0$ has a positive root at $x = \alpha$ radians.

(c) Show that
$$5 < \alpha < 6$$

The iteration formula

$$x_{n+1} = 8 - 2 \arctan x_n$$

can be used to find an approximation for α

(*d*) Taking $x_0 = 5$, use this formula to find x_1 and x_2 , giving each answer to 3 decimal places.

[2016 June, IAL Q10]

(2)

(3)

(2)

(2)

(2)

28.

f(x) = $x^3 - 5x + 16$ (a) Show that the equation f(x) = 0 can be rewritten as

$$x = (ax+b)^{\overline{3}}$$

giving the values of the constants *a* and *b*.

The equation f(x) = 0 has exactly one real root α , where $\alpha = -3$ to one significant figure.

(*b*) Starting with $x_1 = -3$, use the iteration

$$x_{n+1} = (ax_n + b)^{\frac{1}{3}}$$

with the values of a and b found

in part (*a*), to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 3 decimal places.

(3)

(c) Using a suitable interval, show that $\alpha = -3.17$ correct to 2 decimal places.

(2)

[2017 Jan, IAL Q2]

kumarmaths.weebly.com 19

$$y = (2x^2 - 3) \tan\left(\frac{1}{2}x\right), \qquad 0 < x < \pi$$

(a) Find the exact value of x when y = 0

Given that $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ when $x = \alpha$,

(*b*) show that

$$2\alpha^2 - 3 + 4\alpha \sin \alpha = 0 \tag{6}$$

The iterative formula

$$x_{n+1} = \frac{3}{(2x_n + 4\sin x_n)}$$

can be used to find an approximation for α .

(c) Taking $x_1 = 0.7$, find the values of x_2 and x_3 , giving each answer to 4 decimal places. (2)

(d) By choosing a suitable interval, show that
$$\alpha = 0.7283$$
 to 4 decimal places.

(2)

[2017 June, IAL Q11]

$$f(x) = x^5 + x^3 - 12x^2 - 8, \qquad x \in \mathbb{R}$$

(a) Show that the equation
$$f(x) = 0$$
 can be written as

$$x = \sqrt[3]{\frac{4(3x^2 + 2)}{x^2 + 1}}$$

(3)

(*b*) Use the iterative formula

$$x_{n+1} = \sqrt[3]{\frac{4(3x_n^2 + 2)}{x_n^2 + 1}}$$

with $x_0 = 2$, to find x_1 , x_2 and x_3 giving your answers to 3 decimal places.

(3)

The equation f(x) = 0 has a single root, α .

(c) By choosing a suitable interval, prove that $\alpha = 2.247$ to 3 decimal places.

(2)

[2017 Oct, IAL Q1]

kumarmaths.weebly.com 20

30.

(1)

$f(x) = \frac{x^2}{4} + \ln(2x), \qquad x > 0$

 $x = \frac{1}{2}e^{-\frac{1}{4}x^2}$

- (a) Show that the equation f(x) = 0 can be rewritten as
- The equation f(x) = 0 has a root near 0.5
- (b) Starting with $x_1 = 0.5$ use the iterative formula
 - $x_{n+1} = \frac{1}{2} e^{-\frac{1}{4}x_n^2}$

to calculate the values of x_2 , x_3 and x_4 , giving your answers to 4 decimal places.

(c) Using a suitable interval, show that 0.473 is a root of f(x) = 0 correct to 3 decimal places.

[2018 Jan, IAL Q3]

$$f(x) = 2^{x-1} - 4 + 1.5x \qquad x \in \mathbb{R}$$

- (a) Show that the equation f(x) = 0 can be written as
 - $x=\frac{1}{3}(8-2^x)$
- The equation f(x) = 0 has a root α , where $\alpha = 1.6$ to one decimal place.
- (b) Starting with $x_0 = 1.6$, use the iteration formula

$$x_{n+1} = \frac{1}{3}(8 - 2^{x_n})$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(c) By choosing a suitable interval, prove that $\alpha = 1.633$ to 3 decimal places.

(2)

[2018 June, IAL Q3]

32.

(2)

(3)

(2)

(2)

Figure 1 shows a sketch of part of the curve with equation $y = 8x - xe^{3x}$, $x \ge 0$ The curve meets the *x*-axis at the origin and cuts the *x*-axis at the point *A*.

(a) Find the exact x coordinate of A, giving your answer in its simplest form.

(2)

(2)

(2)

(2)

The curve has a maximum turning point at the point *M*.

(b) Show, by using calculus, that the *x* coordinate of *M* is a solution of

$$x = \frac{1}{3} \ln \left(\frac{8}{1+3x} \right) \tag{5}$$

(c) Use the iterative formula

$$x_{n+1} = \frac{1}{3} \ln \left(\frac{8}{1+3x_n} \right)$$

with $x_0 = 0.4$ to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places. (3)

[2018 Oct, IAL Q4]

34. (*a*) Given that $0 \le f(x) \le \pi$, sketch the graph of y = f(x) where

$$f(x) = \arccos(x-1), \qquad 0 \le x \le 2$$

The equation $\arccos (x - 1) - \tan x = 0$ has a single root α .

(b) Show that $0.9 < \alpha < 1.1$

The iteration formula

$$x_{n+1} = \arctan(\arccos(x_n - 1))$$

can be used to find an approximation for α .

(c) Taking $x_0 = 1.1$ find, to 3 decimal places, the values of x_1 and x_2

[2019 Jan, IAL Q11]

kumarmaths.weebly.com 22

$$f(x) = 2x^3 + x - 20$$

(a) Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt[3]{a - bx}$$

where a and b are positive constants to be determined.

- (b) Starting with x₁ = 2.1 use the iteration formula x_{n+1} = ³√a bx_n, with the numerical values of a and b, to calculate the values of x₂ and x₃ giving your answers to 3 decimal places.
 (2)
- (c) Using a suitable interval, show that 2.077 is a root of the equation f(x) = 0 correct to 3 decimal places.

(2)

(d) Hence state a root, to 3 decimal places, of the equation

$$2(x+2)^3 + x - 18 = 0$$
(1)

[2019 June, IAL Q1]

36. The curve *C* has equation

$$y = x\cos 2x \qquad 0 \le x \le \frac{\pi}{4}$$

The curve has a turning point at the point *P*.

(a) Show, using calculus, that the x coordinate of P is a solution of the equation

$$x = \frac{1}{2}\arctan\left(\frac{1}{2x}\right) \tag{4}$$

(*b*) Starting with $x_0 = 0.5$ use

$$x_{n+1} = \frac{1}{2}\arctan\left(\frac{1}{2x_n}\right)$$

to calculate the value of x_1 and the value of x_2 , giving your answers to 4 decimal places.

(3)

[2019 Oct, IAL Q4]

kumarmaths.weebly.com 23

Figure 1 shows a sketch of part of the curve C with equation

 $y = e^{-2x} + x^2 - 3$

The curve C crosses the y-axis at the point A.

The line l is the normal to C at the point A.

(a) Find the equation of *l*, writing your answer in the form y = mx + c, where m and c are constants.
(5)

The line l meets C again at the point B, as shown in Figure 1.

(b) Show that the x coordinate of B is a solution of

$$x = \sqrt{1 + \frac{1}{2}x - e^{-2x}}$$
(2)

Using the iterative formula

$$x_{n+1} = \sqrt{1 + \frac{1}{2}x_n - e^{-2x_n}}$$

with $x_i = 1$

(c) find x₂ and x₃ to 3 decimal places.

(2)

[2018 June, C3 Q4]

kumarmaths.weebly.com 24

Figure 1 shows a sketch of part of the curve with equation y = f(x), where

 $f(x) = (x^2 - x - 12) \ln(x + 3), \quad x \in \Box, x > -3$

(a) Find f'(x).

The curve has a minimum turning point at *A*.

(b) Show that the *x* coordinate of *A* is a solution of the equation

$$x = \frac{\ln(x+3) + 4}{2\ln(x+3) + 1}$$

(3)

(2)

(c) Use the iteration formula

$$x_{n+1} = \frac{\ln(x_n + 3) + 4}{2\ln(x_n + 3) + 1}$$

with $x_0 = 1$ to find the values of x_1 , x_2 and x_3 giving your answers to 3 decimal places. (3)

A different curve with equation y = 2f(x) + k, where k is a constant, passes through the origin.

(*d*) Find the exact value of *k*.

(2)

[2019 June, C3 Q6]

kumarmaths.weebly.com 25