Edexcel

Pure Mathematics

Year 2

Numerical Methods

Past paper questions from Core Maths 3 and IAL C34

Edited by: K V Kumaran
1.

$$
\mathrm{f}(x)=3 \mathrm{e}^{x}-\frac{1}{2} \ln x-2, \quad x>0
$$

(a) Differentiate to find $\mathrm{f}^{\prime}(x)$.

The curve with equation $y=\mathrm{f}(x)$ has a turning point at P. The x-coordinate of P is α.
(b) Show that $\alpha=\frac{1}{6} \mathrm{e}^{-\alpha}$.

The iterative formula

$$
x_{n+1}=\frac{1}{6} \mathrm{e}^{-x_{n}}, \quad x_{0}=1
$$

is used to find an approximate value for α.
(c) Calculate the values of x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 decimal places.
(d) By considering the change of sign of $\mathrm{f}^{\prime}(x)$ in a suitable interval, prove that $\alpha=0.1443$ correct to 4 decimal places.
2.

$$
\mathrm{f}(x)=2 x^{3}-x-4
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt{\left(\frac{2}{x}+\frac{1}{2}\right)} . \tag{3}
\end{equation*}
$$

The equation $2 x^{3}-x-4=0$ has a root between 1.35 and 1.4.
(b) Use the iteration formula

$$
x_{n+1}=\sqrt{\left(\frac{2}{x_{n}}+\frac{1}{2}\right)}
$$

with $x_{0}=1.35$, to find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.

The only real root of $\mathrm{f}(x)=0$ is α.
(c) By choosing a suitable interval, prove that $\alpha=1.392$, to 3 decimal places.

Figure 2 shows part of the curve with equation

$$
y=(2 x-1) \tan 2 x, \quad 0 \leq x<\frac{\pi}{4} .
$$

The curve has a minimum at the point P. The x-coordinate of P is k.
(a) Show that k satisfies the equation

$$
4 k+\sin 4 k-2=0
$$

The iterative formula

$$
x_{n+1}=\frac{1}{4}\left(2-\sin 4 x_{n}\right), \quad x_{0}=0.3 \text {, }
$$

is used to find an approximate value for k.
(b) Calculate the values of x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 decimals places.
(c) Show that $k=0.277$, correct to 3 significant figures.
4. The function f is defined by

$$
\mathrm{f}: x \mapsto \ln (4-2 x), \quad x<2 \text { and } x \in \mathbb{R}
$$

(a) Show that the inverse function of f is defined by

$$
\mathrm{f}^{-1}: x \mapsto 2-\frac{1}{2} \mathrm{e}^{x}
$$

and write down the domain of f^{-1}.
(b) Write down the range of f^{-1}.
(c) Sketch the graph of $y=\mathrm{f}^{-1}(x)$. State the coordinates of the points of intersection with the x and y axes.

The graph of $y=x+2$ crosses the graph of $y=\mathrm{f}^{-1}(x)$ at $x=k$.
The iterative formula

$$
x_{n+1}=-\frac{1}{2} \mathrm{e}^{x_{n}}, \quad x_{0}=-0.3,
$$

is used to find an approximate value for k.
(d) Calculate the values of x_{1} and x_{2}, giving your answer to 4 decimal places.
(e) Find the values of k to 3 decimal places.
5.

$$
\mathrm{f}(x)=-x^{3}+3 x^{2}-1
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be rewritten as
$x=\sqrt{\left(\frac{1}{3-x}\right)}$.
(b) Starting with $x_{1}=0.6$, use the iteration

$$
x_{n+1}=\sqrt{\left(\frac{1}{3-x_{n}}\right)}
$$

to calculate the values of x_{2}, x_{3} and x_{4}, giving all your answers to 4 decimal places.
(c) Show that $x=0.653$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.
[C3 2007 June Q4]
6.

$$
\mathrm{f}(x)=\ln (x+2)-x+1, \quad x>-2, x \in \mathbb{R} .
$$

(a) Show that there is a root of $\mathrm{f}(x)=0$ in the interval $2<x<3$.
(b) Use the iterative formula

$$
x_{n+1}=\ln \left(x_{n}+2\right)+1, \quad x_{0}=2.5,
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $x=2.505$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.
7.

$$
\mathrm{f}(x)=3 x^{3}-2 x-6
$$

(a) Show that $\mathrm{f}(x)=0$ has a root, α, between $x=1.4$ and $x=1.45$.
(b) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
x=\sqrt{\left(\frac{2}{x}+\frac{2}{3}\right)}, \quad x \neq 0
$$

(c) Starting with $x_{0}=1.43$, use the iteration

$$
x_{n+1}=\sqrt{\left(\frac{2}{x_{n}}+\frac{2}{3}\right)}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places.
(d) By choosing a suitable interval, show that $\alpha=1.435$ is correct to 3 decimal places.
[C3 2008 June Q7]
8.

$$
\mathrm{f}(x)=3 x \mathrm{e}^{x}-1 .
$$

The curve with equation $y=\mathrm{f}(x)$ has a turning point P.
(a) Find the exact coordinates of P.

The equation $\mathrm{f}(x)=0$ has a root between $x=0.25$ and $x=0.3$.
(b) Use the iterative formula

$$
x_{n+1}=\frac{1}{3} \mathrm{e}^{-x_{n}} .
$$

with $x_{0}=0.25$ to find, to 4 decimal places, the values of x_{1}, x_{2} and x_{3}.
-
(c) By choosing a suitable interval, show that a root of $\mathrm{f}(x)=0$ is $x=0.2576$ correct to 4 decimal places.
[C3 2009 Jan Q7]
9.

Figure 1
shows part of the curve with equation $y=-x^{3}+2 x^{2}+2$, which intersects the x-axis at the point A where $x=\alpha$.
To find an approximation to α, the iterative formula

$$
x_{n+1}=\frac{2}{\left(x_{n}\right)^{2}}+2 \quad \text { is used. }
$$

(a) Taking $x_{0}=2.5$, find the values of x_{1}, x_{2}, x_{3} and x_{4}.

Give your answers to 3 decimal places where appropriate.
(b) Show that $\alpha=2.359$ correct to 3 decimal places.
10.

$$
\mathrm{f}(x)=x^{3}+2 x^{2}-3 x-11
$$

(a) Show that $\mathrm{f}(x)=0$ can be rearranged as

$$
\begin{equation*}
x=\sqrt{\left(\frac{3 x+11}{x+2}\right)}, \quad x \neq-2 . \tag{2}
\end{equation*}
$$

The equation $\mathrm{f}(x)=0$ has one positive root α.
The iterative formula $x_{n+1}=\sqrt{\left(\frac{3 x_{n}+11}{x_{n}+2}\right)}$ is used to find an approximation to α.
(b) Taking $x_{1}=0$, find, to 3 decimal places, the values of x_{2}, x_{3} and x_{4}.
(c) Show that $\alpha=2.057$ correct to 3 decimal places.
11. $\mathrm{f}(x)=4 \operatorname{cosec} x-4 x+1$, where x is in radians.
(a) Show that there is a root α of $\mathrm{f}(x)=0$ in the interval $[1.2,1.3]$.
(b) Show that the equation $\mathrm{f}(x)=0$ can be written in the form

$$
x=\frac{1}{\sin x}+\frac{1}{4}
$$

(c) Use the iterative formula

$$
x_{n+1}=\frac{1}{\sin x_{n}}+\frac{1}{4}, \quad x_{0}=1.25,
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places.
(d) By considering the change of sign of $\mathrm{f}(x)$ in a suitable interval, verify that $\alpha=1.291$ correct to 3 decimal places.
[C3 2010 June Q3]
12.

Figure 1 shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=(8-x) \ln x, \quad x>0
$$

The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure
(a) Write down the coordinates of A and the coordinates of B.
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Show that the x-coordinate of Q lies between 3.5 and 3.6
(d) Show that the x-coordinate of Q is the solution of

$$
x=\frac{8}{1+\ln x} .
$$

To find an approximation for the x-coordinate of Q, the iteration formula

$$
x_{n+1}=\frac{8}{1+\ln x_{n}}
$$

is used.
(e) Taking $x_{0}=3.55$, find the values of x_{1}, x_{2} and x_{3}.

Give your answers to 3 decimal places.
13.

$$
\mathrm{f}(x)=2 \sin \left(x^{2}\right)+x-2, \quad 0 \leq x<2 \pi .
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between $x=0.75$ and $x=0.85$.

The equation $\mathrm{f}(x)=0$ can be written as $x=[\arcsin (1-0.5 x)]^{\frac{1}{2}}$.
(b) Use the iterative formula

$$
x_{n+1}=\left[\arcsin \left(1-0.5 x_{n}\right)\right]^{\frac{1}{2}}, \quad x_{0}=0.8
$$

to find the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $\alpha=0.80157$ is correct to 5 decimal places.
14.

$$
\mathrm{f}(x)=x^{2}-3 x+2 \cos \left(\frac{1}{2} x\right), \quad 0 \leq x \leq \pi
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a solution in the interval $0.8<x<0.9$.

The curve with equation $y=\mathrm{f}(x)$ has a minimum point P.
(b) Show that the x-coordinate of P is the solution of the equation

$$
\begin{equation*}
x=\frac{3+\sin \left(\frac{1}{2} x\right)}{2} . \tag{4}
\end{equation*}
$$

(c) Using the iteration formula

$$
x_{n+1}=\frac{3+\sin \left(\frac{1}{2} x_{n}\right)}{2}, \quad x_{0}=2
$$

find the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
(d) By choosing a suitable interval, show that the x-coordinate of P is 1.9078 correct to 4 decimal places.
15.

$$
\mathrm{f}(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \quad x \neq-3 . \tag{3}
\end{equation*}
$$

The equation $x^{3}+3 x^{2}+4 x-12=0$ has a single root which is between 1 and 2.
(b) Use the iteration formula

$$
x_{n+1}=\sqrt{\left(\frac{4\left(3-x_{n}\right)}{\left(3+x_{n}\right)}\right)}, \quad n \geq 0
$$

with $x_{0}=1$ to find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.

The root of $\mathrm{f}(x)=0$ is α.
(c) By choosing a suitable interval, prove that $\alpha=1.272$ to 3 decimal places.
[C3 2012June Q2]
16.

$$
\mathrm{g}(x)=\mathrm{e}^{x-1}+x-6
$$

(a) Show that the equation $\mathrm{g}(x)=0$ can be written as

$$
\begin{equation*}
x=\ln (6-x)+1, \quad x<6 . \tag{2}
\end{equation*}
$$

The root of $\mathrm{g}(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(6-x_{n}\right)+1, \quad x_{0}=2 .
$$

is used to find an approximate value for α.
(b) Calculate the values of x_{1}, x_{2} and x_{3} to 4 decimal places.
(c) By choosing a suitable interval, show that $\alpha=2.307$ correct to 3 decimal places.
17.

$$
\mathrm{f}(x)=25 x^{2} \mathrm{e}^{2 x}-16, \quad x \in
$$

(a) Using calculus, find the exact coordinates of the turning points on the curve with equation $y=\mathrm{f}(x)$.
(b) Show that the equation $\mathrm{f}(x)=0$ can be written as $x= \pm \frac{4}{5} e^{-x}$.

The equation $\mathrm{f}(x)=0$ has a root α, where $\alpha=0.5$ to 1 decimal place.
(c) Starting with $x_{0}=0.5$, use the iteration formula

$$
x_{n+1}=\frac{4}{5} e^{-x_{n}}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
(d) Give an accurate estimate for α to 2 decimal places, and justify your answer.
[C3 2013June Q2]
18.

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=\left(x^{2}+3 x+1\right) e^{x^{2}}
$$

The curve cuts the x-axis at points A and B as shown in Figure 2.
(a) Calculate the x-coordinate of A and the x-coordinate of B, giving your answers to 3 decimal places.
(b) Find $\mathrm{f}^{\prime}(x)$.

The curve has a minimum turning point P as shown in Figure 2.
(c) Show that the x-coordinate of P is the solution of

$$
\begin{equation*}
x=-\frac{3\left(2 x^{2}+1\right)}{2\left(x^{2}+2\right)} \tag{3}
\end{equation*}
$$

(d) Use the iteration formula

$$
x_{n+1}=-\frac{3\left(2 x_{n}^{2}+1\right)}{2\left(x_{n}^{2}+2\right)}, \quad \text { with } x_{0}=-2.4,
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
The x-coordinate of P is α.
(e) By choosing a suitable interval, prove that $\alpha=-2.43$ to 2 decimal places.
[C3 2013June Q2_R]
19.

Figure 2
Figure 2 shows a sketch of part of the curve with equation

$$
y=2 \cos \left(\frac{1}{2} x^{2}\right)+x^{3}-3 x-2
$$

The curve crosses the x-axis at the point Q and has a minimum turning point at R.
(a) Show that the x coordinate of Q lies between 2.1 and 2.2.
(b) Show that the x coordinate of R is a solution of the equation

$$
\begin{equation*}
x=\sqrt{1+\frac{2}{3} x \sin \left(\frac{1}{2} x^{2}\right)} \tag{4}
\end{equation*}
$$

Using the iterative formula

$$
x_{n+1}=\sqrt{1+\frac{2}{3} x_{n} \sin \left(\frac{1}{2} x_{n}^{2}\right)}, \quad x_{0}=1.3
$$

(c) find the values of x_{1} and x_{2} to 3 decimal places.
[C3 2014June Q6]
20. A curve C has equation $y=\mathrm{e}^{4 x}+x^{4}+8 x+5$.
(a) Show that the x coordinate of any turning point of C satisfies the equation

$$
\begin{equation*}
x^{3}=-2-\mathrm{e}^{4 x} \tag{3}
\end{equation*}
$$

(b) On a pair of axes, sketch, on a single diagram, the curves with equations
(i) $y=x^{3}$,
(ii) $y=-2-\mathrm{e}^{4 x}$

On your diagram give the coordinates of the points where each curve crosses the y axis and state the equation of any asymptotes.
(c) Explain how your diagram illustrates that the equation $x^{3}=-2-\mathrm{e}^{4 x}$ has only one root.

The iteration formula

$$
x_{n+1}=\left(-2-e^{4 x_{n}}\right)^{\frac{1}{3}}, \quad x_{0}=-1
$$

can be used to find an approximate value for this root.
(d) Calculate the values of x_{1} and x_{2}, giving your answers to 5 decimal places.
(e) Hence deduce the coordinates, to 2 decimal places, of the turning point of the curve C.
[C3 2014June Q2_R]
21.

Figure 1
Figure 1 is a sketch showing part of the curve with equation $y=2^{x+1}-3$ and part of the line with equation $y=17-x$.

The curve and the line intersect at the point A.
(a) Show that the x-coordinate of A satisfies the equation

$$
\begin{equation*}
x=\frac{\ln (20-x)}{\ln 2}-1 . \tag{3}
\end{equation*}
$$

(b) Use the iterative formula

$$
x_{n+1}=\frac{\ln \left(20-x_{n}\right)}{\ln 2}-1, \quad x_{0}=3,
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
(c) Use your answer to part (b) to deduce the coordinates of the point A, giving your answers to one decimal place.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=g(x)$, where

$$
\mathrm{g}(x)=\left|4 \mathrm{e}^{2 x}-25\right|, \quad x \in \mathbb{R}
$$

The curve cuts the y-axis at the point A and meets the x-axis at the point B. The curve has an asymptote $y=k$, where k is a constant, as shown in Figure 1.
(a) Find, giving each answer in its simplest form,
(i) the y coordinate of the point A,
(ii) the exact x coordinate of the point B,
(iii) the value of the constant k.

The equation $\mathrm{g}(x)=2 x+43$ has a positive root at $x=\alpha$.
(b) Show that α is a solution of $x=\frac{1}{2} \ln \left(\frac{1}{2} x+17\right)$.

The iteration formula

$$
\begin{equation*}
x_{n+1}=\frac{1}{2} \ln \left(\frac{1}{2} x_{n}+17\right) \tag{2}
\end{equation*}
$$

can be used to find an approximation for α.
(c) Taking $x_{0}=1.4$, find the values of x_{1} and x_{2}. Give each answer to 4 decimal places.
(d) By choosing a suitable interval, show that $\alpha=1.437$ to 3 decimal places.
23.

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$
y=2 \ln (2 x+5)-\frac{3 x}{2}, \quad x>-2.5
$$

The point P with x coordinate -2 lies on C.
(a) Find an equation of the normal to C at P. Write your answer in the form $a x+b y=c$, where a, b and c are integers.

The normal to C at P cuts the curve again at the point Q, as shown in Figure 2.
(b) Show that the x coordinate of Q is a solution of the equation

$$
\begin{equation*}
x=\frac{20}{11} \ln (2 x+5)-2 \tag{3}
\end{equation*}
$$

The iteration formula

$$
x_{n+1}=\frac{20}{11} \ln \left(2 x_{n}+5\right)-2
$$

can be used to find an approximation for the x coordinate of Q.
(c) Taking $x_{1}=2$, find the values of x_{2} and x_{3}, giving each answer to 4 decimal places.
24.

$$
\mathrm{f}(x)=2 x^{3}+x-10
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval [1.5, 2].

The only real root of $\mathrm{f}(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\left(5-\frac{1}{2} x_{n}\right)^{\frac{1}{3}}, \quad x_{0}=1.5
$$

can be used to find an approximate value for α.
(b) Calculate x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places.
(c) By choosing a suitable interval, show that $\alpha=1.6126$ correct to 4 decimal places.
[2014 June, IAL Q1]
25.

$$
\mathrm{f}(x)=-x^{3}+4 x^{2}-6
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root between $x=1$ and $x=2$
(b) Show that the equation $\mathrm{f}(x)=0$ can be rewritten as

$$
\begin{equation*}
x=\sqrt{\left(\frac{6}{4-x}\right)} \tag{2}
\end{equation*}
$$

(c) Starting with $x_{1}=1.5$ use the iteration $x_{n+1}=\sqrt{\left(\frac{6}{4-x_{n}}\right)}$ to calculate the values of x_{2}, x_{3} and x_{4} giving all your answers to 4 decimal places.
(d) Using a suitable interval, show that 1.572 is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.
[2016 Jan, IAL Q5]
26.

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$
y=\frac{x^{2} \ln x}{3}-2 x+4, \quad x>0
$$

Point A is the minimum turning point on the curve.
(a) Show, by using calculus, that the x coordinate of point A is a solution of

$$
\begin{equation*}
x=\frac{6}{1+\ln \left(x^{2}\right)} \tag{5}
\end{equation*}
$$

(b) Starting with $x_{0}=2.27$, use the iteration

$$
x_{n+1}=\frac{6}{1+\ln \left(x_{n}^{2}\right)}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
(c) Use your answer to part (b) to deduce the coordinates of point A to one decimal place.
27. (a) Given that $-\frac{\pi}{2}<\mathrm{g}(x)<\frac{\pi}{2}$, sketch the graph of $y=\mathrm{g}(x)$ where

$$
\begin{equation*}
\mathrm{g}(x)=\arctan x, \quad x \in \mathbb{R} \tag{2}
\end{equation*}
$$

(b) Find the exact value of x for which

$$
\begin{equation*}
3 \mathrm{~g}(x+1)-\pi=0 \tag{3}
\end{equation*}
$$

The equation $\arctan x-4+\frac{1}{2} x=0$ has a positive root at $x=\alpha$ radians.
(c) Show that $5<\alpha<6$

The iteration formula

$$
x_{n+1}=8-2 \arctan x_{n}
$$

can be used to find an approximation for α
(d) Taking $x_{0}=5$, use this formula to find x_{1} and x_{2}, giving each answer to 3 decimal places.
[2016 June, IAL Q10]
28.

$$
\mathrm{f}(x)=x^{3}-5 x+16
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be rewritten as

$$
\begin{equation*}
x=(a x+b)^{\frac{1}{3}} \tag{2}
\end{equation*}
$$

giving the values of the constants a and b.

The equation $\mathrm{f}(x)=0$ has exactly one real root α, where $\alpha=-3$ to one significant figure.
(b) Starting with $x_{1}=-3$, use the iteration

$$
x_{n+1}=\left(a x_{n}+b\right)^{\frac{1}{3}}
$$

with the values of a and b found
in part (a), to calculate the values of x_{2}, x_{3} and x_{4}, giving all your answers to 3 decimal places.
(c) Using a suitable interval, show that $\alpha=-3.17$ correct to 2 decimal places.
29.

$$
y=\left(2 x^{2}-3\right) \tan \left(\frac{1}{2} x\right), \quad 0<x<\pi
$$

(a) Find the exact value of x when $y=0$

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=\alpha$,
(b) show that

$$
\begin{equation*}
2 \alpha^{2}-3+4 \alpha \sin \alpha=0 \tag{6}
\end{equation*}
$$

The iterative formula

$$
x_{n+1}=\frac{3}{\left(2 x_{n}+4 \sin x_{n}\right)}
$$

can be used to find an approximation for α.
(c) Taking $x_{1}=0.7$, find the values of x_{2} and x_{3}, giving each answer to 4 decimal places.
(d) By choosing a suitable interval, show that $\alpha=0.7283$ to 4 decimal places.
[2017 June, IAL Q11]
30.

$$
\mathrm{f}(x)=x^{5}+x^{3}-12 x^{2}-8, \quad x \in \mathbb{R}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt[3]{\frac{4\left(3 x^{2}+2\right)}{x^{2}+1}} \tag{3}
\end{equation*}
$$

(b) Use the iterative formula

$$
x_{n+1}=\sqrt[3]{\frac{4\left(3 x_{n}^{2}+2\right)}{x_{n}^{2}+1}}
$$

with $x_{0}=2$, to find x_{1}, x_{2} and x_{3} giving your answers to 3 decimal places.

The equation $\mathrm{f}(x)=0$ has a single root, α.
(c) By choosing a suitable interval, prove that $\alpha=2.247$ to 3 decimal places.
31.

$$
\mathrm{f}(x)=\frac{x^{2}}{4}+\ln (2 x), \quad x>0
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be rewritten as

$$
\begin{equation*}
x=\frac{1}{2} \mathrm{e}^{-\frac{1}{4} x^{2}} \tag{2}
\end{equation*}
$$

The equation $\mathrm{f}(x)=0$ has a root near 0.5
(b) Starting with $x_{1}=0.5$ use the iterative formula

$$
x_{n+1}=\frac{1}{2} \mathrm{e}^{-\frac{1}{4} x_{n}^{2}}
$$

to calculate the values of x_{2}, x_{3} and x_{4}, giving your answers to 4 decimal places.
(c) Using a suitable interval, show that 0.473 is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.
[2018 Jan, IAL Q3]
32.

$$
\mathrm{f}(x)=2^{x-1}-4+1.5 x \quad x \in \mathbb{R}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
x=\frac{1}{3}\left(\begin{array}{ll}
8 & 2^{x} \tag{2}
\end{array}\right)
$$

The equation $\mathrm{f}(x)=0$ has a root α, where $\alpha=1.6$ to one decimal place.
(b) Starting with $x_{0}=1.6$, use the iteration formula

$$
x_{n+1}=\frac{1}{3}\left(\begin{array}{ll}
8 & 2^{x_{n}}
\end{array}\right)
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
(c) By choosing a suitable interval, prove that $\alpha=1.633$ to 3 decimal places.
33.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=8 x-x \mathrm{e}^{3 x}, \quad x \geqslant 0$
The curve meets the x-axis at the origin and cuts the x-axis at the point A.
(a) Find the exact x coordinate of A, giving your answer in its simplest form.

The curve has a maximum turning point at the point M.
(b) Show, by using calculus, that the x coordinate of M is a solution of

$$
\begin{equation*}
x=\frac{1}{3} \ln \left(\frac{8}{1+3 x}\right) \tag{5}
\end{equation*}
$$

(c) Use the iterative formula

$$
x_{n+1}=\frac{1}{3} \ln \left(\frac{8}{1+3 x_{n}}\right)
$$

with $x_{0}=0.4$ to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
[2018 Oct, IAL Q4]
34. (a) Given that $0 \leqslant \mathrm{f}(x) \leqslant \pi$, sketch the graph of $y=\mathrm{f}(x)$ where

$$
\begin{equation*}
\mathrm{f}(x)=\arccos (x-1), \quad 0 \leqslant x \leqslant 2 \tag{2}
\end{equation*}
$$

The equation $\arccos (x-1)-\tan x=0$ has a single root α.
(b) Show that $0.9<\alpha<1.1$

The iteration formula

$$
x_{n+1}=\arctan \left(\arccos \left(x_{n}-1\right)\right)
$$

can be used to find an approximation for α.
(c) Taking $x_{0}=1.1$ find, to 3 decimal places, the values of x_{1} and x_{2}
[2019 Jan, IAL Q11]
35.

$$
\mathrm{f}(x)=2 x^{3}+x-20
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be rewritten as

$$
x=\sqrt[3]{a-b x}
$$

where a and b are positive constants to be determined.
(b) Starting with $x_{1}=2.1$ use the iteration formula $x_{n+1}=\sqrt[3]{a-b x_{n}}$, with the numerical values of a and b, to calculate the values of x_{2} and x_{3} giving your answers to 3 decimal places.
(c) Using a suitable interval, show that 2.077 is a root of the equation $\mathrm{f}(x)=0$ correct to 3 decimal places.
(d) Hence state a root, to 3 decimal places, of the equation

$$
2(x+2)^{3}+x-18=0
$$

[2019 June, IAL Q1]
36. The curve C has equation

$$
y=x \cos 2 x \quad 0 \leq x \leq \frac{\pi}{4}
$$

The curve has a turning point at the point P.
(a) Show, using calculus, that the x coordinate of P is a solution of the equation

$$
\begin{equation*}
x=\frac{1}{2} \arctan \left(\frac{1}{2 x}\right) \tag{4}
\end{equation*}
$$

(b) Starting with $x_{0}=0.5$ use

$$
x_{n+1}=\frac{1}{2} \arctan \left(\frac{1}{2 x_{n}}\right)
$$

to calculate the value of x_{1} and the value of x_{2}, giving your answers to 4 decimal places.
37.

Figure 1
Figure 1 shows a sketch of part of the curve C with equation

$$
y=\mathrm{e}^{-2 x}+x^{2}-3
$$

The curve C crosses the y-axis at the point A.
The line l is the normal to C at the point A.
(a) Find the equation of l, writing your answer in the form $y=m x+c$, where m and c are constants.

The line l meets C again at the point B, as shown in Figure 1.
(b) Show that the x coordinate of B is a solution of

$$
\begin{equation*}
x=\sqrt{1+\frac{1}{2} x-\mathrm{e}^{-2 x}} \tag{2}
\end{equation*}
$$

Using the iterative formula

$$
x_{n+1}=\sqrt{1+\frac{1}{2} x_{n}-\mathrm{e}^{-2 x_{n}}}
$$

with $x_{1}=1$
(c) find x_{1} and x_{1} to 3 decimal places.
38.

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=\left(x^{2}-x-12\right) \ln (x+3), \quad x \in \square, x>-3
$$

(a) Find $\mathrm{f}^{\prime}(x)$.

The curve has a minimum turning point at A.
(b) Show that the x coordinate of A is a solution of the equation

$$
x=\frac{\ln (x+3)+4}{2 \ln (x+3)+1}
$$

(c) Use the iteration formula

$$
x_{n+1}=\frac{\ln \left(x_{n}+3\right)+4}{2 \ln \left(x_{n}+3\right)+1}
$$

with $x_{0}=1$ to find the values of x_{1}, x_{2} and x_{3} giving your answers to 3 decimal places.

A different curve with equation $y=2 \mathrm{f}(x)+k$, where k is a constant, passes through the origin.
(d) Find the exact value of k.

