Edexcel

Pure Mathematics

Year 2

Newton-Raphson Methods

Past paper questions from FP1and IAL F1

Edited by: K V Kumaran
1.

$$
\mathrm{f}(x)=x^{3}+x-3 .
$$

The equation $\mathrm{f}(x)=0$ has a root, α, between 1 and 2 .
(a) By considering $\mathrm{f}^{\prime}(x)$, show that α is the only real root of the equation $\mathrm{f}(x)=0$.
(b) Taking 1.2 as your first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 significant figures.
(c) Prove that your answer to part (b) gives the value of α correct to 3 significant figures.
[P4 January 2002 Qn 4]
2.

$$
\mathrm{f}(x)=x^{3}+8 x-19
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has only one real root.
(b) Show that the real root of $\mathrm{f}(x)=0$ lies between 1 and 2 .
(c) Obtain an approximation to the real root of $\mathrm{f}(x)=0$ by performing two applications of the Newton-Raphson procedure to $\mathrm{f}(x)$, using $x=2$ as the first approximation. Give your answer to 3 decimal places.
(d) By considering the change of sign of $\mathrm{f}(x)$ over an appropriate interval, show that your answer to part (c) is accurate to 3 decimal places.
[FP1 June 2007 Qn 4]
3.

$$
\mathrm{f}(x)=4 \cos x+\mathrm{e}^{-x}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between 1.6 and 1.7
(b) Taking 1.6 as your first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 significant figures.
[FP1 June 2008Qn 2]
4.

$$
\mathrm{f}(x)=3 \sqrt{ } x+\frac{18}{\sqrt{ } x}-20
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval [1.1, 1.2].
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Using $x_{0}=1.1$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 significant figures.
[FP1 January 2009 Qn 5]
5. Given that α is the only real root of the equation

$$
x^{3}-x^{2}-6=0
$$

(a) show that $2.2<\alpha<2.3$
(b) Taking 2.2 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)=x^{3}-x^{2}-6$ to obtain a second approximation to α, giving your answer to 3 decimal places.
(c) Use linear interpolation once on the interval [2.2,2.3] to find another approximation to α, giving your answer to 3 decimal places.
[FP1 June 2009 Qn 4]
6.

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-\frac{7}{x}+2, x>0 \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between 1.4 and 1.5.
(b) Taking 1.45 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)=x^{3}-\frac{7}{2}+2, x>0$ to obtain a second approximation to α, giving your answer to 3 decimal places.
[FP1 June 2010 Qn 3]
7.

$$
\mathrm{f}(x)=5 x^{2}-4 x^{\frac{3}{2}}-6, \quad x \geq 0
$$

The root α of the equation $\mathrm{f}(x)=0$ lies in the interval $[1.6,1.8]$.
(a) Use linear interpolation once on the interval $[1.6,1.8]$ to find an approximation to α. Give your answer to 3 decimal places.
(b) Differentiate $\mathrm{f}(x)$ to find $\mathrm{f}^{\prime}(x)$.
(c) Taking 1.7 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
[FP1 January 2011 Qn 3]
8. $\mathrm{f}(x)=x^{2}+\frac{5}{2 x}-3 x-1, \quad x \neq 0$.
(a) Use differentiation to find $\mathrm{f}^{\prime}(x)$.

The root α of the equation $\mathrm{f}(x)=0$ lies in the interval [0.7, 0.9].
(b) Taking 0.8 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
[FP1 June 2011 Qn 4]
9. (a) Show that $\mathrm{f}(x)=x^{4}+x-1$ has a real root α in the interval $[0.5,1.0]$.
(b) Taking 0.75 as a first approximation, apply the Newton Raphson process twice to $\mathrm{f}(x)$ to obtain an approximate value of α. Give your answer to 3 decimal places.
[FP1 January 2012 Qn 3]
10.

$$
f(x)=x^{2}+\frac{3}{4 \sqrt{ } x}-3 x-7, \quad x>0
$$

A root α of the equation $\mathrm{f}(x)=0$ lies in the interval $[3,5]$.
Taking 4 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 2 decimal places.
[FP1 June 2012 Qn 3]
11.

$$
\mathrm{f}(x)=2 x^{\frac{1}{2}}+x^{-\frac{1}{2}}-5, \quad x>0
$$

(a) Find $\mathrm{f}^{\prime}(x)$.

The equation $\mathrm{f}(x)=0$ has a root α in the interval [4.5, 5.5].
(b) Using $x_{0}=5$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 significant figures.
[FP1 Jan 2013 Qn 3]
12.

$$
\mathrm{f}(x)=\frac{1}{2} x^{4}-x^{3}+x-3
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between $x=2$ and $x=2.5$.

The equation $\mathrm{f}(x)=0$ has a root β in the interval $[-2,-1]$.
(b) Taking -1.5 as a first approximation to β, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to β.

Give your answer to 2 decimal places.
[FP1_R June 2013 Qn 3]
13.

$$
\mathrm{f}(x)=x^{3}-\frac{5}{2 x^{\frac{3}{2}}}+2 x-3, \quad x>0
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[1.1,1.5]$.
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Using $x_{0}=1.1$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
[FP1 June 2014 Qn 2]
14. $\mathrm{f}(x)=3 x^{\frac{3}{2}}-25 x^{-\frac{1}{2}}-125 x>0$.
(a) Find $\mathrm{f}^{\prime}(x)$

The equation $\mathrm{f}(x)=0$ has a root α in the interval $[12,13]$.
(b) Using $x_{0}=12.5$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
[FP1 June 2016 Qn 2]
15.

$$
\mathrm{f}(x)=\frac{1}{3} x^{2}+\frac{4}{x^{2}} \quad 2 x \quad 1, x>0
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[6,7]$
(b) Taking 6 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 2 decimal places.
[FP1 June 2017 Qn 1]
16.

$$
\mathrm{f}(x)=\frac{3}{2} x^{2}+\frac{4}{3 x}+2 x-5, \quad x<0
$$

The equation $\mathrm{f}(x)=0$ has a single root α.
(a) Show that α lies in the interval $[-3,-2.5]$
(b) Taking -3 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
[FP1 June 2018 Qn 2]
17. (i)

$$
\mathrm{f}(x)=3 x^{2}-\frac{1}{2 \sqrt{x}}-5 x, \quad x>0
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[1,2]$.
(b) Find $\mathrm{f}^{\prime}(x)$.
(b) Find (x)
(c) Using $x_{0}=2$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 2 decimal places.
[FP1 June 2019 Qn 4]
18.

$$
\mathrm{f}(x)=6 \sqrt{x}-x^{2}-\frac{1}{2 x}, \quad x>0
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval [3, 4].
(b) Taking 3 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
[IAL F1 Jan 2014 Qn 1]
19.

$$
\mathrm{f}(x)=x^{\frac{3}{2}}-3 x^{\frac{1}{2}}-3, \quad x>0
$$

Given that α is the only real root of the equation $\mathrm{f}(x)=0$,
(a) show that $4<\alpha<5$.
(b) Taking 4.5 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
[IAL F1 June 2014 Qn 4]
20.

$$
\mathrm{f}(x)=x^{3}-3 x^{2}+\frac{1}{2 \sqrt{x^{5}}}+2, \quad x>0
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[2,3]$.
(b) Taking 3 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.
[IAL F1 Jan 2015 Qn 2]
21.

$$
\mathrm{f}(x)=x^{2}-\frac{3}{\sqrt{x}}-\frac{4}{3 x^{2}}, \quad x>0
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval [1.6, 1.7]
(b) Taking 1.6 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.
[IAL F1 Jan 2016 Qn 2]
22.

$$
\mathrm{f}(x)=x^{2}+\frac{3}{x}-1, \quad x<0
$$

The only real root, α, of the equation $\mathrm{f}(x)=0$ lies in the interval $[-2,-1]$.
(a) Taking -1.5 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 2 decimal places.
(b) Show that your answer to part (a) gives α correct to 2 decimal places.
[IAL F1 May 2016 Qn 3]
23.

$$
\mathrm{f}(x)=x^{3}-\frac{1}{2 x}+x^{\frac{3}{2}}, \quad x>0
$$

The root α of the equation $\mathrm{f}(x)=0$ lies in the interval $[0.6,0.7]$.
(a) Taking 0.6 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
(b) Show that your answer to part (a) is correct to 3 decimal places.
[IAL F1 Jan 2017 Qn 6]
24.

$$
\mathrm{f}(x)=30+\frac{7}{\sqrt{x}}-x^{5}, \quad x>0
$$

Taking 2 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 2 decimal places.
[IAL F1 May 2017 Qn 5]
25.

$$
\mathrm{f}(x)=3 x^{2}-\frac{5}{3 \sqrt{x}}-6, \quad x>0
$$

The single root α of the equation $\mathrm{f}(x)=0$ lies in the interval [1.5, 1.6].
(a) Taking 1.5 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
26.

$$
\mathrm{f}(x)=x^{3}-\frac{1}{2 x}+x^{\frac{3}{2}}, \quad x>0
$$

The root α of the equation $\mathrm{f}(x)=0$ lies in the interval $[0.6,0.7]$.
(a) Taking 0.6 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
(b) Show that your answer to part (a) is correct to 3 decimal places.
[IAL F1 Jan 2018 Qn 6]
27.

$$
\mathrm{f}(x)=\frac{2\left(x^{3}+3\right)}{\sqrt{x}}-9, \quad x>0
$$

The equation $\mathrm{f}(x)=0$ has two real roots α and β, where $0.4<\alpha<0.5$ and $1.2<\beta<1.3$
(a) Taking 0.45 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
[IAL F1 May 2018 Qn 6]
28.

$$
\mathrm{f}(x)=2 x^{3}-\frac{7}{x^{2}}+16, \quad x \neq 0
$$

The equation $\mathrm{f}(x)=0$ also has a single root β in the interval [0.6, 0.7].
Taking 0.65 as a first approximation to β, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to β, giving your answer to 4 decimal places.
[IAL F1 Jan 2019 Qn 4]
29.

$$
\mathrm{f}(x)=5+4 x^{2}-\frac{4}{3} x^{3}-\frac{7}{2 x} \quad x>0
$$

(a) Find $\mathrm{f}^{\prime}(x)$

A root α of the equation $\mathrm{f}(x)=0$ lies in the interval $[0.5,0.6]$.
(b)Using 0.5 as a first approximation to α, apply the Newton-Raphson process once to
$\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.
(c) Show that the equation $\mathrm{f}(x)=0$ has a root β in the interval [3, 3.5].
[IAL F1 May 2019 Qn 1]

