Edexcel

Pure Mathematics

Year 1 Logarithms

Past paper questions from C2 and IAL C12

Edited by: K V Kumaran

1. Find, giving your answer to 3 significant figures where appropriate, the value of x for which
(a) $3^{x}=5$,
(b) $\log _{2}(2 x+1)-\log _{2} x=2$.
(4)
(Q3, C2 Jan 2005)
2. Solve
(a) $5^{x}=8$, giving your answer to 3 significant figures,
(b) $\log _{2}(x+1)-\log _{2} x=\log _{2} 7$.
(Q2, C2 June 2005)
3. (i) Write down the value of $\log _{6} 36$.
(ii) Express $2 \log _{a} 3+\log _{a} 11$ as a single logarithm to base a.
(Q3, C2 May 2006)
4. Solve the equation $5^{x}=17$, giving your answer to 3 significant figures.
(Q4, C2 Jan 2007)
5. (a) Find, to 3 significant figures, the value of x for which $8^{x}=0.8$.
(b) Solve the equation

$$
\begin{equation*}
2 \log _{3} x-\log _{3} 7 x=1 \tag{4}
\end{equation*}
$$

(Q6, C2 May 2007)
6. Given that a and b are positive constants, solve the simultaneous equations

$$
\begin{gathered}
a=3 b, \\
\log _{3} a+\log _{3} b=2 .
\end{gathered}
$$

Give your answers as exact numbers.
7. (a) Find, to 3 significant figures, the value of x for which $5^{x}=7$.
(b) Solve the equation $5^{2 x}-12\left(5^{x}\right)+35=0$.
(Q4, C2 June 2008)
8. Given that $0<x<4$ and

$$
\log _{5}(4-x)-2 \log _{5} x=1
$$

find the value of x.
(6)
(Q4, C2 Jan 2009)
9. (a) Find the value of y such that

$$
\begin{equation*}
\log _{2} y=-3 \tag{2}
\end{equation*}
$$

(b) Find the values of x such that

$$
\frac{\log _{2} 32+\log _{2} 16}{\log _{2} x}=\log _{2} x
$$

(5)
(Q8, C2 June 2009)
10. (a) Find the positive value of x such that

$$
\begin{equation*}
\log _{x} 64=2 \tag{2}
\end{equation*}
$$

(b) Solve for x

$$
\begin{equation*}
\log _{2}(11-6 x)=2 \log _{2}(x-1)+3 . \tag{6}
\end{equation*}
$$

(Q5, C2 Jan 2010)
11. (a) Given that

$$
2 \log _{3}(x-5)-\log _{3}(2 x-13)=1
$$

show that $x^{2}-16 x+64=0$.
(b) Hence, or otherwise, solve $2 \log _{3}(x-5)-\log _{3}(2 x-13)=1$.
(Q7, C2 June 2010)
12. (a) Sketch the graph of $y=7^{x}, x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.
(b) Solve the equation

$$
7^{2 x}-4\left(7^{x}\right)+3=0
$$

giving your answers to 2 decimal places where appropriate.
13. Find, giving your answer to 3 significant figures where appropriate, the value of x for which
(a) $5^{x}=10$,
(b) $\log _{3}(x-2)=-1$.
14. Given that $y=3 x^{2}$,
(a) show that $\log _{3} y=1+2 \log _{3} x$.
(b) Hence, or otherwise, solve the equation

$$
\begin{equation*}
1+2 \log _{3} x=\log _{3}(28 x-9) \tag{3}
\end{equation*}
$$

15. Find the values of x such that

$$
\begin{equation*}
2 \log _{3} x-\log _{3}(x-2)=2 \tag{5}
\end{equation*}
$$

(Q2, C2 May 2012)
16. Given that $2 \log _{2}(x+15)-\log _{2} x=6$,
(a) show that $x^{2}-34 x+225=0$.
(b) Hence, or otherwise, solve the equation $2 \log _{2}(x+15)-\log _{2} x=6$.
(Q6, C2 Jan 2013)
17. (i) Find the exact value of x for which

$$
\begin{equation*}
\log _{2}(2 x)=\log _{2}(5 x+4)-3 . \tag{4}
\end{equation*}
$$

(ii) Given that

$$
\log _{a} y+3 \log _{a} 2=5
$$

express y in terms of a.
Give your answer in its simplest form.
18. Given that $\log _{3} x=a$, find in terms of a,
(a) $\log _{3}(9 x)$
(b) $\log _{3}\left(\frac{x^{5}}{81}\right)$
giving each answer in its simplest form.
(c) Solve, for x,

$$
\log _{3}(9 x)+\log _{3}\left(\frac{x^{5}}{81}\right)=3
$$

giving your answer to 4 significant figures.
(Q6, C2 May 2013_R)
19. (a) Sketch the graph of

$$
y=3^{x}, x \in \mathbb{R},
$$

showing the coordinates of any points at which the graph crosses the axes.
(b) Use algebra to solve the equation $3^{2 x}-9\left(3^{x}\right)+18=0$, giving your answers to 2 decimal places where appropriate.
20. (i) Solve

$$
5^{y}=8
$$

giving your answers to 3 significant figures.
(ii) Use algebra to find the values of x for which

$$
\log _{2}(x+15)-4=\frac{1}{2} \log _{2} x
$$

(Q8, C2 May 2014_R)
21. (i) Use logarithms to solve the equation $8^{2 x+1}=24$, giving your answer to 3 decimal places.
(ii) Find the values of y such that

$$
\log _{2}(11 y-3)-\log _{2} 3-2 \log _{2} y=1, \quad y>\frac{3}{11}
$$

22. (i) Given that

$$
\log _{3}(3 b+1)-\log _{3}(a-2)=-1, \quad a>2,
$$

express b in terms of a.
(ii) Solve the equation

$$
2^{2 x+5}-7\left(2^{x}\right)=0,
$$

giving your answer to 2 decimal places.
23. (i) $2 \log (x+a)=\log \left(16 a^{6}\right)$, where a is a positive constant

Find x in terms of a, giving your answer in its simplest form.
(ii) $\quad \log _{3}(9 y+b)-\log _{3}(2 y-b)=2$, where b is a positive constant Find y in terms of b, giving your answer in its simplest form.
24. (i) Find the value of y for which

$$
\begin{equation*}
1.01^{y-1}=500 \tag{2}
\end{equation*}
$$

Give your answer to 2 decimal places.
(ii) Given that

$$
2 \log _{4}(3 x+5)=\log _{4}(3 x+8)+1, \quad x>-\frac{5}{3}
$$

(a) show that

$$
9 x^{2}+18 x-7=0
$$

(b) Hence solve the equation

$$
2 \log _{4}(3 x+5)=\log _{4}(3 x+8)+1, \quad x>-\frac{5}{3}
$$

25. (i) Find the real value of x such that

$$
\log _{x} 600=3
$$

Give your answer to 2 decimal places.
(ii) Solve the equation

$$
\log _{9}(3 x)+\log _{9}\left(\frac{x^{4}}{81}\right)=2
$$

giving the exact answer in the form $x=3^{k}$, where k is a rational number.
26. Given that a and b are positive constants, solve the simultaneous equations

$$
\begin{gathered}
a b=25 \\
\log _{4} a-\log _{4} b=3
\end{gathered}
$$

Show each step of your working, giving exact values for a and b.
27. Solve, giving each answer to 3 significant figures, the equations
(a) $4^{a}=20$
(b) $3+2 \log _{2} b=\log _{2}(30 b)$
(Q3, IAL C12 May 2014)
28. Given that

$$
2 \log _{4}(2 x+3)=1+\log _{4} x+\log _{4}(2 x-1), \quad x>\frac{1}{2}
$$

(a) Show that

$$
\begin{equation*}
4 x^{2}-16 x-9+0 \tag{5}
\end{equation*}
$$

(b) Hence solve the equation

$$
2 \log _{4}(2 x+3)=1+\log _{4} x+\log _{4}(2 x-1), x>\frac{1}{2}
$$

29. (i) Find, giving your answer to 3 significant figures, the value of y for which

$$
\begin{equation*}
3^{y}=12 \tag{2}
\end{equation*}
$$

(ii) Solve, giving an exact answer, the equation

$$
\log _{2}(x+3)-\log _{2}(2 x+4)=4
$$

(You should show each step in your working.)
30. (i) Given that
$\log _{a} x+\log _{a} 3=\log _{a} 27-1$, where a is a positive constant
find, in its simplest form, an expression for x in terms of a.
(4)
(ii) Solve the equation

$$
\left(\log _{5} y\right)^{2}-7\left(\log _{5} y\right)+12=0
$$

showing each step of your working.
(Q14, IAL C12 Jan 2016)
31. (a) Show that the equation

$$
2 \log _{2} y=5-\log _{2} x \quad x>0, y>0
$$

may be written in the form $y^{2}=\frac{k}{x}$ where k is a constant to be found.
(b) Hence, or otherwise, solve the simultaneous equations

$$
\begin{array}{r}
\qquad \begin{aligned}
& 2 \log _{2} y=5-\log _{2} x \\
& \text { for } x>0, y>0 \log _{x} y=-3
\end{aligned}
\end{array}
$$

(Q13, IAL C12 May 2016)
32. Find, giving your answer to 3 significant figures where appropriate, the value of x for which
(a) $7^{2 x}=14$
(b) $\log _{5}(3 x+1)=-2$
33. (a) Given that

$$
y=\log _{3} x
$$

find expressions in terms of y for
(i) $\log _{3}\left(\frac{x}{9}\right)$
(ii) $\log _{3} \sqrt{x}$

Write each answer in its simplest form.
(b) Hence or otherwise solve

$$
\begin{equation*}
2 \log _{3}\left(\frac{x}{9}\right)-\log _{3} \sqrt{x}=2 \tag{3}
\end{equation*}
$$

(Q5, IAL C12 Jan 2017)
34. (i) Find the exact value of x for which

$$
\begin{equation*}
2 \log _{10}(x-2)-\log _{10}(x+5)=0 \tag{5}
\end{equation*}
$$

(ii) Given

$$
\log _{p}(4 y+1)-\log _{p}(2 y-2)=1 \quad p>2, y>1
$$

express y in terms of p.
(Q9, IAL C12 May 2017)
35. (i) Use the laws of logarithms to solve the equation

$$
\begin{equation*}
3 \log _{8} 2+\log _{8}(7-x)=2+\log _{8} x \tag{5}
\end{equation*}
$$

(ii) Using algebra, find, in terms of logarithms, the exact value of y for which

$$
\begin{equation*}
3^{2 y}+3^{y+1}=10 \tag{5}
\end{equation*}
$$

(Q10, IAL C12 Jan 2018)
36. Find the exact values of x for which

$$
\begin{equation*}
2 \log _{5}(x+5)-\log _{5}(2 x+2)=2 \tag{7}
\end{equation*}
$$

Give your answers as simplified surds.
(Q6, IAL C12 May 2018)
37. (i) Find the value of x for which

$$
4^{3 x+2}=3^{600}
$$

giving your answer to 4 significant figures.
(ii) Given that

$$
\log _{a}(3 b-2)-2 \log _{a} 5=4, \quad a>0, a \neq b>\frac{2}{3}
$$

find an expression for b in terms of a.
(Q13, IAL C12 Oct 2018)
38. (i) Given that x is a positive real number, solve the equation

$$
\log _{x} 324=4
$$

writing your answer as a simplified surd.
(ii) Given that

$$
\log _{a}(5 y-4)-\log _{a}(2 y)=3 \quad y>0.8,0<a<1
$$

express y in terms of a.
39. Given that $p=\log _{a} 9$ and $q=\log a 10$, where a is a constant, find in terms of p and q,
(a) $\quad \log a 900$
(b) $\quad \log a 0.3$
40. (i) Given that p is a positive constant and

$$
\log _{p} 2 x-\log _{p} 5=3+\log _{p} 8
$$

find, in its simplest form, an expression for x in terms of p.
(ii) Solve the equation

$$
2\left(\log _{2} y\right)^{2}+7 \log _{2} y-15=0
$$

Show each step in your working and write your answers as simplified surds where appropriate.
(Q12, IAL C12 Oct 2019)

