OCR Core Maths 2

Past paper questions Coordinate Geometry

Edited by K V Kumaran
Email: kvkumaran@gmail.com
Phone: 07961319548

Coordinates, Points and Lines

- Mid point of $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$. Average the x-coordinates and average the y-coordinates.
- Distance from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is (by Pythagoras) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. Be careful about negatives! Remember $(2-(-3))^{2}=(2+3)^{2}$.
- Gradient is defined to be

$$
\frac{\text { difference in } y}{\text { difference in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text {. }
$$

If you need the gradient between two points you should visualise them first to see if you should be getting a positive or negative answer. This should also give you an idea of whether to expect a big (steep) of small (shallow) gradient.

- Two lines with gradients m_{1} and m_{2} are at right angles (perpendicular) if $m_{1} \times m_{2}=-1$. So if a line has gradient -3 then the line perpendicular to it has gradient $\frac{1}{3}$.
- Lines can be written in many forms, the most common being $y=m x+c$ and $a x+b y=c$. Any form can be converted to any other. For example write $3 x-2 y=4$ in the form $y=m x+c$.

$$
\begin{aligned}
3 x-2 y & =4 \\
2 y & =3 x-4 \\
y & =\frac{3}{2} x-2 .
\end{aligned}
$$

- Given one point $\left(x_{1}, y_{1}\right)$ and a gradient m the line is given by $y-y_{1}=m\left(x-x_{1}\right)$.

1.

(i) Find the gradient of the line l_{1} which has equation $4 x-3 y+5=0$.
(ii) Find an equation of the line l_{2}, which passes through the point $(1,2)$ and which is perpendicular to the line l_{1}, giving your answer in the form $a x+b y+c=0$.

The line l_{1} crosses the x-axis at P and the line l_{2} crosses the y-axis at Q.
(iii) Find the coordinates of the mid-point of $P Q$.
(iv) Calculate the length of $P Q$, giving your answer in the form $\frac{\sqrt{ } a}{b}$, where a and b are integers.

Q9 June 2005

2.

The points A, B and C have coordinates $(5,1),(p, 7)$ and $(8,2)$ respectively.
(i) Given that the distance between points A and B is twice the distance between points A and C, calculate the possible values of p.
(ii) Given also that the line passing through A and B has equation $y=3 x-14$, find the coordinates of the mid-point of $A B$.

Q9 Jan 2006

3.

A is the point $(2,7)$ and B is the point $(-1,-2)$.
(i) Find the equation of the line through A parallel to the line $y=4 x-5$, giving your answer in the form $y=m x+c$.
(ii) Calculate the length of $A B$, giving your answer in simplified surd form.
(iii) Find the equation of the line which passes through the mid-point of $A B$ and which is perpendicular to $A B$. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Q9 Jan 2007

4.

The points A and B have coordinates $(-5,-2)$ and $(3,1)$ respectively.
(i) Find the equation of the line $A B$, giving your answer in the form $a x+b y+c=0$.
(ii) Find the coordinates of the mid-point of $A B$.

The point C has coordinates $(-3,4)$.
(iii) Calculate the length of $A C$, giving your answer in simplified surd form.
(iv) Determine whether the line $A C$ is perpendicular to the line $B C$, showing all your working.
5.
A is the point $(4,-3)$ and B is the point $(-1,9)$.
(i) Calculate the length of $A B$.
(ii) Find the coordinates of the mid-point of $A B$.
(iii) Find the equation of the line through $(1,3)$ which is parallel to $A B$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Q9 June 2009
6.

The points A and B have coordinates $(6,1)$ and $(-2,7)$ respectively.
(i) Find the length of $A B$.
(ii) Find the gradient of the line $A B$.
(iii) Determine whether the line $4 x-3 y-10=0$ is perpendicular to $A B$.

7.

The line l has gradient -2 and passes through the point $A(3,5) . B$ is a point on the line l such that the distance $A B$ is $6 \sqrt{5}$. Find the coordinates of each of the possible points B.
8.
(i) Find the gradient of the line l which has equation $3 x-5 y-20=0$.
(ii) The line l crosses the x-axis at P and the y-axis at Q. Find the coordinates of the mid-point of $P Q$.
9.
(i) The line joining the points $(-2,7)$ and $(-4, p)$ has gradient 4 . Find the value of p.
(ii) The line segment joining the points $(-2,7)$ and $(6, q)$ has mid-point $(m, 5)$. Find m and q.
(iii) The line segment joining the points $(-2,7)$ and $(d, 3)$ has length $2 \sqrt{13}$. Find the two possible values of d.

10.

A is the point $(-2,6)$ and B is the point $(3,-8)$. The line l is perpendicular to the line $x-3 y+15=0$ and passes through the mid-point of $A B$. Find the equation of l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
11.
A is the point $(5,7)$ and B is the point $(-1,-5)$.
(i) Find the coordinates of the mid-point of the line segment $A B$.
(ii) Find an equation of the line through A that is perpendicular to the line segment $A B$, giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.
12.

The points A and B have coordinates $(2,1)$ and $(5,-3)$ respectively.
(i) Find the length of $A B$.
(ii) Find an equation of the line through the mid-point of $A B$ which is perpendicular to $A B$, giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.

