KumardMaths Pearson Edexcel GCSE Maths (9-1) Past Exam Questions by Topics:
 Solving Equations using Iteration methods.

1. (a) Show that the equation $x^{3}+x=7$ has a solution between 1 and 2 .
(b) Show that the equation $x^{3}+x=7$ can be rearranged to give $x=\sqrt[3]{7} \quad x$
(c) Starting with $x_{0}=2$,
use the iteration formula $x_{n+1}=\sqrt[3]{7} x_{n}$ three times to find an estimate for a solution of $x^{3}+x=7$
2. (a) Show that the equation $x^{3}+7 x-5=0$ has a solution between $x=0$ and $x=1$
(b) Show that the equation $x^{3}+7 x-5=0 \quad$ can be arranged to give $x=\frac{5}{x^{2}+7}$
(c) Starting with $x_{0}=1$, use the iteration formula $x_{n+1}=\frac{5}{x_{n}^{2}+7}$ three times to find an estimate for the solution of $x^{3}+7 x-5=$
(d) By substituting your answer to part (c) into $x^{3}+7 x-5$, comment on the accuracy of your estimate for the solution to $x^{3}+7 x-5=0$
\qquad
\qquad
3. Using $x_{n+1}=2 \frac{4}{x_{n}^{2}}$
with $x_{0}=-2.5$
(a) find the values of x_{1}, x_{2} and x_{3}

$$
\begin{align*}
& x_{1}=\ldots \ldots \ldots \ldots . \ldots \ldots . ~ \\
& x_{2}=\ldots . ~
\end{align*}
$$

(b) Explain the relationship between the values of x_{1}, x_{2} and x_{3} and the equation $x^{3}+2 x^{2}+4=0$
\qquad
\qquad
\qquad
\qquad
4. (a) Show that the equation $x^{3}+4 x=1$ has a solution between $x=0$ and $x=1$
(b) Show that the equation $x^{3}+4 x=1$ can be arranged to give $x=\frac{1}{4}-\frac{x^{3}}{4}$
(c) Starting with $x_{0}=0$, use the iteration formula $x_{n+1}=\frac{1}{4}-\frac{x_{n}{ }^{3}}{4}$ twice, to find an estimate for the solution of $x^{3}+4 x=1$
5. (a) Show that the equation $x^{3}+5 x-4=0$ has a solution between $x=0$ and $x=1$
(b) Show that the equation $x^{3}+5 x-4=0$ can be arranged to give $x=\frac{4}{x^{2}+5}$
(c) Starting with $\quad x_{0}=0$, use the iteration formula $\quad x_{n+1}=\frac{4}{x_{n}{ }^{2}+5}$ twice, to find an estimate for the solution of $x^{3}+5 x-4=0$
6. (a) Show that the equation $2 x^{3}+4 x=3$ has a solution between 0 and 1 .
(b) Show that $2 x^{3}+4 x=3$ can be arranged to give $x=\frac{3}{4}-\frac{x^{3}}{2}$
(c) Starting with $x_{0}=0$, use the iteration formula $x_{n+1}=\frac{3}{4}-\frac{x_{n}^{3}}{2}$ three times to find an estimate for the solution to $2 x^{3}+4 x=3$
\qquad
7. (a) Show that the equation $x^{3}-3 x^{2}+3=0$ has a solution between $x=2$ and $x=3$
(b) Show that the equation $x^{3}-3 x^{2}+3=0$ can be rearranged to give $x=\sqrt[3]{3 x^{2}} 3$
(c) Starting with $x_{0}=2$, use the iteration formula $x_{n+1}=\sqrt[3]{3 x^{2}} \quad 3$ to find the value of x_{2}. Give your answer correct to 3 decimal places.
8. $\mathrm{f}(x)=3 x^{3}-2 x-6$.
(a) Show that $\mathrm{f}(x)=0$ has a root, α, between $x=1.4$ and $x=1.45$.
(2)
(b) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
x=\sqrt{\left(\frac{2}{x}+\frac{2}{3}\right)}, x \neq 0
$$

(3)
(c) Starting with $x_{0}=1.43$, use the iteration

$$
x_{n+1}=\sqrt{\left(\frac{2}{x_{n}}+\frac{2}{3}\right)}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places.
9.

$$
\mathrm{f}(x)=2 x^{3}-x-4
$$

(a) Show that $\mathrm{f}(x)=0$ has a root, α, between 1.35 and 1.4.
(b) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
x=\sqrt{\left(\frac{2}{x}+\frac{1}{2}\right)}
$$

(c) Use the iteration formula

$$
x_{n+1}=\sqrt{\left(\frac{2}{x_{n}}+\frac{1}{2}\right)}
$$

with $x_{0}=1.35$, to find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.

