Edexcel

Pure Mathematics

Year 1
 Integration 1

Past paper questions from Core Maths 1

Edited by: K V Kumaran

Past paper questions from

Edexcel Core Maths 1.

From Jan 2005 to May 2019.

Integration 01
This Section 1 has 45 Questions on application on integration.

Please check the Edexcel website for the solutions.

1. (i) Given that $y=5 x^{3}+7 x+3$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(ii) Find $\int\left(1+3 \sqrt{ } x-\frac{1}{x^{2}}\right) d x$.
2. The gradient of the curve C is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(3 x-1)^{2}
$$

The point $P(1,4)$ lies on C.
(a) Find an equation of the normal to C at P.
(b) Find an equation for the curve C in the form $y=\mathrm{f}(x)$.
(c) Using $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3 x-1)^{2}$, show that there is no point on C at which the tangent is parallel to the line $y=1-2 x$.
3. Given that $y=6 x-\frac{4}{x^{2}}, x \neq 0$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) find $\int y \mathrm{~d} x$.
4. Given that $y=2 x^{2}-\frac{6}{x^{3}}, x \neq 0$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) find $\int y \mathrm{~d} x$.
5. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(1,6)$. Given that

$$
\mathrm{f}^{\prime}(x)=3+\frac{5 x^{2}+2}{x^{\frac{1}{2}}}, x>0,
$$

find $\mathrm{f}(x)$ and simplify your answer.
(C1 Jan 2006, Q8)
6. Find $\int\left(6 x^{2}+2+x^{-\frac{1}{2}}\right) \mathrm{d} x$, giving each term in its simplest form.
(C1 May 2006, Q1)
7. The curve C with equation $y=\mathrm{f}(x), x \neq 0$, passes through the point $\left(3,7 \frac{1}{2}\right)$.

Given that $\mathrm{f}^{\prime}(x)=2 x+\frac{3}{x^{2}}$,
(a) find $\mathrm{f}(x)$.
(b) Verify that $\mathrm{f}(-2)=5$.
(c) Find an equation for the tangent to C at the point $(-2,5)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
8. (a) Show that $(4+3 \sqrt{ } x)^{2}$ can be written as $16+k \sqrt{ } x+9 x$, where k is a constant to be found.
(b) Find $\int(4+3 \sqrt{ } x)^{2} d x$.
(C1 Jan 2007, Q6)
9. The curve C has equation $y=\mathrm{f}(x), x \neq 0$, and the point $P(2,1)$ lies on C. Given that

$$
\mathrm{f}^{\prime}(x)=3 x^{2}-6-\frac{8}{x^{2}},
$$

(a) find $\mathrm{f}(x)$.
(b) Find an equation for the tangent to C at the point P, giving your answer in the form $y=m x+c$, where m and c are integers.
10. Given that $y=3 x^{2}+4 \sqrt{ } x, x>0$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$,
(c) $\int y \mathrm{~d} x$.
(C1 May 2007, Q3)
11. The curve C with equation $y=\mathrm{f}(x)$ passes through the point $(5,65)$.

Given that $\mathrm{f}^{\prime}(x)=6 x^{2}-10 x-12$,
(a) use integration to find $\mathrm{f}(x)$.
(b) Hence show that $\mathrm{f}(x)=x(2 x+3)(x-4)$.
(c) Sketch C, showing the coordinates of the points where C crosses the x-axis.
(C1 May 2007, Q9)
12. Find $\int\left(3 x^{2}+4 x^{5}-7\right) \mathrm{d} x$.
(C1 Jan 2008, Q1)
13. The curve C has equation $y=\mathrm{f}(x), x>0$, and $\mathrm{f}^{\prime}(x)=4 x-6 \sqrt{ } x+\frac{8}{x^{2}}$.

Given that the point $P(4,1)$ lies on C,
(a) find $\mathrm{f}(x)$ and simplify your answer.
(b) Find an equation of the normal to C at the point $P(4,1)$.
(C1 Jan 2008, Q9)
14. Find $\int\left(2+5 x^{2}\right) d x$.
(C1 June 2008, Q1)
15. The gradient of a curve C is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+3\right)^{2}}{x^{2}}, x \neq 0$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+6+9 x^{-2}$.

The point $(3,20)$ lies on C.
(b) Find an equation for the curve C in the form $y=\mathrm{f}(x)$.
(C1 June 2008, Q11)
16. Find $\int\left(12 x^{5}-8 x^{3}+3\right) \mathrm{d} x$, giving each term in its simplest form.
17. A curve has equation $y=\mathrm{f}(x)$ and passes through the point $(4,22)$.

Given that

$$
\mathrm{f}^{\prime}(x)=3 x^{2}-3 x^{\frac{1}{2}}-7
$$

use integration to find $\mathrm{f}(x)$, giving each term in its simplest form.
(C1 Jan 2009, Q5)
18. Given that $y=2 x^{3}+\frac{3}{x^{2}}, x \neq 0$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\int y \mathrm{~d} x$, simplifying each term.
(C1 June 2009, Q3)
19.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{-\frac{1}{2}}+x \sqrt{ } x, \quad x>0
$$

Given that $y=35$ at $x=4$, find y in terms of x, giving each term in its simplest form.
20. Find

$$
\int\left(8 x^{3}+6 x^{\frac{1}{2}}-5\right) \mathrm{d} x
$$

giving each term in its simplest form.
21. The curve C has equation $y=\mathrm{f}(x), x>0$, where

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x-\frac{5}{\sqrt{ } x}-2 .
$$

Given that the point $P(4,5)$ lies on C, find
(a) $\mathrm{f}(x)$,
(b) an equation of the tangent to C at the point P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
22. Find

$$
\int\left(12 x^{5}-3 x^{2}+4 x^{\frac{1}{3}}\right) \mathrm{d} x,
$$

giving each term in its simplest form.
(C1 Jan 2011, Q2)
23. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(-1,0)$.

Given that

$$
\mathrm{f}^{\prime}(x)=12 x^{2}-8 x+1
$$

find $\mathrm{f}(x)$.
24. Given that $y=2 x^{5}+7+\frac{1}{x^{3}}, x \neq 0$, find, in their simplest form,
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\int y \mathrm{~d} x$.
(C1 May 2011, Q2)
25. Given that $y=x^{4}+6 x^{\frac{1}{2}}$, find in their simplest form
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\int y \mathrm{~d} x$.
(C1 Jan 2012, Q1)
26. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(2,10)$. Given that

$$
f^{\prime}(x)=3 x^{2}-3 x+5,
$$

find the value of $f(1)$.
(C1 Jan 2012, Q7)
27. Find

$$
\int\left(6 x^{2}+\frac{2}{x^{2}}+5\right) \mathrm{d} x
$$

giving each term in its simplest form.
(C1 May 2012, Q1)
28. The point $P(4,-1)$ lies on the curve C with equation $y=\mathrm{f}(x), x>0$, and

$$
\mathrm{f}^{\prime}(x)=\frac{1}{2} x-\frac{6}{\sqrt{ } x}+3
$$

(a) Find the equation of the tangent to C at the point P, giving your answer in the form $y=m x+c$, where m and c are integers.
(b) Find $\mathrm{f}(x)$.
29.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-x^{3}+\frac{4 x-5}{2 x^{3}}, \quad x \neq 0 .
$$

Given that $y=7$ at $x=1$, find y in terms of x, giving each term in its simplest form.
30. Find

$$
\int\left(3 x^{2}-\frac{4}{x^{2}}\right) \mathrm{d} x
$$

giving each term in its simplest form.
(C1 May 2013R, Q3)
31. A curve has equation $y=\mathrm{f}(x)$. The point P with coordinates $(9,0)$ lies on the curve.

Given that

$$
\mathrm{f}^{\prime}(x)=\frac{x+9}{\sqrt{ } x}, \quad x>0
$$

(a) find $\mathrm{f}(x)$.
(b) Find the x-coordinates of the two points on $y=\mathrm{f}(x)$ where the gradient of the curve is equal to 10 .
(C1 May 2013R, Q10)
32. Find

$$
\int\left(10 x^{4}-4 x-\frac{3}{\sqrt{ } x}\right) \mathrm{d} x
$$

giving each term in its simplest form.
(C1 May 2013, Q2)
33.

$$
\mathrm{f}^{\prime}(x)=\frac{\left(3-x^{2}\right)^{2}}{x^{2}}, \quad x \neq 0
$$

(a) Show that $\mathrm{f}^{\prime}(x)=9 x^{-2}+A+B x^{2}$, where A and B are constants to be found.
(b) Find $\mathrm{f}^{\prime \prime}(x)$.

Given that the point $(-3,10)$ lies on the curve with equation $y=\mathrm{f}(x)$,
(c) find $\mathrm{f}(x)$.
(C1 May 2013, Q9)
34. Given that $y=2 x^{5}+\frac{6}{\sqrt{x}}, x>0$, find in their simplest form
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) $\int y \mathrm{~d} x$
35.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{-\frac{1}{2}}+x \sqrt{ } x, \quad x>0
$$

Given that $y=37$ at $x=4$, find y in terms of x, giving each term in its simplest form.
(C1 May 2014R, Q8)
36. Find $\int\left(8 x^{3}+4\right) \mathrm{d} x$, giving each term in its simplest form.
(C1 May 2014, Q1)
37. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(4,25)$.

Given that $\mathrm{f}^{\prime}(x)=\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1, \quad x>0$,
(a) find $\mathrm{f}(x)$, simplifying each term.
(b) Find an equation of the normal to the curve at the point $(4,25)$. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers to be found.
(C1 May 2014, Q10)
38. Given that $y=4 x^{3}-\frac{5}{x^{2}}, x \neq 0$, find in their simplest form
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\int y \mathrm{~d} x$.
39. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(4,9)$.

Given that

$$
\mathrm{f}^{\prime}(x)=\frac{3 \sqrt{ } x}{2}-\frac{9}{4 \sqrt{ } x}+2, \quad x>0
$$

(a) find $\mathrm{f}(x)$, giving each term in its simplest form.

Point P lies on the curve.

The normal to the curve at P is parallel to the line $2 y+x=0$.
(b) Find the x-coordinate of P.
(C1 May 2015, Q10)
40. Find

$$
\int\left(2 x^{4}-\frac{4}{\sqrt{x}}+3\right) \mathrm{d} x
$$

giving each term in its simplest form.
(C1 May 2016, Q1)
41. Find

$$
\int\left(2 x^{5}-\frac{1}{4 x^{3}}-5\right) \mathrm{d} x
$$

giving each term in its simplest form.
(C1 May 2017, Q1)
42. The curve C has equation $y=\mathrm{f}(x), x>0$, where

$$
\mathrm{f}^{\prime}(x)=30+\frac{6-5 x^{2}}{\sqrt{x}}
$$

Given that the point $P(4,-8)$ lies on C,
(a) find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.
(b) Find $\mathrm{f}(x)$, giving each term in its simplest form.
(C1 May 2017, Q7)
43. Given

$$
y=3 \sqrt{x}-6 x+4, \quad x>0
$$

(a) find $y \mathrm{~d} x$, simplifying each term.
(b) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(ii) Hence find the value of x such that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
(C1 May 2018, Q2)
44. The curve C has equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}^{\prime}(x)=(x-3)(3 x+5)
$$

Given that the point $P(1,20)$ lies on C,
(a) find $\mathrm{f}(x)$, simplifying each term.
(b) Show that

$$
\mathrm{f}(x)=(x-3)^{2}(x+A)
$$

where A is a constant to be found.
(c) Sketch the graph of C. Show clearly the coordinates of the points where C cuts or meets the x-axis and where C cuts the y-axis.
(C1 May 2018, Q9)
45.

Given that $y=4$ when $x=1$ and that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=12 x^{2}+\frac{4 x+2}{3 x^{4}} \quad x \neq 0
$$

find y in terms of x, giving each term in a simplified form.
(C1 May 2019, Q6)

