Edexcel

Pure Mathematics

Year 2

Implicit Differentiation

Past paper questions from Core Maths 4 and IAL C34

Edited by: K V Kumaran

1. A curve has equation

$$
x^{2}+2 x y-3 y^{2}+16=0 .
$$

Find the coordinates of the points on the curve where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(C4 June 2005, Q2)
2. A curve C is described by the equation

$$
3 x^{2}+4 y^{2}-2 x+6 x y-5=0 .
$$

Find an equation of the tangent to C at the point $(1,-2)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(C4 Jan 2006, Q1)
3. A curve C is described by the equation

$$
3 x^{2}-2 y^{2}+2 x-3 y+5=0
$$

Find an equation of the normal to C at the point $(0,1)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(C4 June 2006, Q1)
4. A set of curves is given by the equation $\sin x+\cos y=0.5$.
(a) Use implicit differentiation to find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

For $-\pi<x<\pi$ and $-\pi<y<\pi$,
(b) find the coordinates of the points where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(C4 Jan 2007, Q5)
5. A curve is described by the equation

$$
\begin{equation*}
x^{3}-4 y^{2}=12 x y . \tag{3}
\end{equation*}
$$

(a) Find the coordinates of the two points on the curve where $x=-8$.
(b) Find the gradient of the curve at each of these points.
(C4 Jan 2008, Q5)
6. A curve has equation $3 x^{2}-y^{2}+x y=4$. The points P and Q lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q.
(a) Use implicit differentiation to show that $y-2 x=0$ at P and at Q.
(b) Find the coordinates of P and Q.
7. A curve C has the equation $y^{2}-3 y=x^{3}+8$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Hence find the gradient of C at the point where $y=3$.
(C4 Jan 2009, Q1)
8. The curve C has the equation $y \mathrm{e}^{-2 x}=2 x+y^{2}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P on C has coordinates $(0,1)$.
(b) Find the equation of the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(C4 June 2009, Q4)
9. A curve C has equation

$$
\begin{equation*}
2^{x}+y^{2}=2 x y . \tag{7}
\end{equation*}
$$

Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point on C with coordinates (3,2).
(C4 June 2010, Q3)
10. Find the gradient of the curve with equation

$$
\ln y=2 x \ln x, \quad x>0, \quad y>0
$$

at the point on the curve where $x=2$. Give your answer as an exact value.
(C4 June 2011, Q5)
11. The curve C has the equation $2 x+3 y^{2}+3 x^{2} y=4 x^{2}$.

The point P on the curve has coordinates $(-1,1)$.
(a) Find the gradient of the curve at P.
(b) Hence find the equation of the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
12. A curve is described by the equation

$$
x^{2}+4 x y+y^{2}+27=0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

A point Q lies on the curve.
The tangent to the curve at Q is parallel to the y-axis.
Given that the x-coordinate of Q is negative,
(b) use your answer to part (a) to find the coordinates of Q.
(C4 June 2013, Q7)
13. The curve C has equation

$$
3^{x-1}+x y-y^{2}+5=0
$$

Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,3)$ on the curve C can be written in the form $\frac{1}{\lambda} \ln \left(\mu \mathrm{e}^{3}\right)$, where λ and μ are integers to be found.
(C4 June 2013_R, Q2)
14. A curve C has the equation

$$
\begin{equation*}
x^{3}+2 x y-x-y^{3}-20=0 \tag{5}
\end{equation*}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Find an equation of the tangent to C at the point (3, -2), giving your answer in the form $a x+b y+c=$ 0 , where a, b and c are integers.
(C4 June 2014, Q1)
15. $x^{2}+y^{2}+10 x+2 y-4 x y=10$
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y, fully simplifying your answer.
(b) Find the values of y for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(C4 June 2014_R, Q3)
16. The curve C has equation

$$
\begin{equation*}
x^{2}-3 x y-4 y^{2}+64=0 \tag{5}
\end{equation*}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Find the coordinates of the points on C where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
17. The curve C has equation

$$
2 x^{2} y+2 x+4 y-\cos (\pi y)=17
$$

(a) Use implicit differentiation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P with coordinates $\left(3, \frac{1}{2}\right)$ lies on C.
The normal to C at P meets the x-axis at the point A.
(b) Find the x coordinate of A, giving your answer in the form $\frac{a \pi+b}{c \pi+d}$, where a, b, c and d are integers to be determined.
(C4 June 2016, Q3)
18. The curve C has equation

$$
4 x^{2}-y^{3}-4 x y+2^{y}=0
$$

The point P with coordinates $(-2,4)$ lies on C.
(a) Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point P.

The normal to C at P meets the y-axis at the point A.
(b) Find the y coordinate of A, giving your answer in the form $p+q \ln 2$, where p and q are constants to be determined.
(C4 June 2017, Q4)
19.

The curve C has equation

$$
x^{2}+x y+y^{2}-4 x-5 y+1=0
$$

(a) Use implicit differentiation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Find the x coordinates of the two points on C where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$

Give exact answers in their simplest form.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
(C4 June 2018, Q2)
20.

The curve C has equation

$$
x^{2}-y^{3}-x-x \sin (\pi y)=-2
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P with coordinates $(3,2)$ lies on C.
The tangent to C at P meets the y-axis at the point Q.
(b) Find the y coordinate of Q, giving your answer in the form $\frac{a \pi+b}{\pi+c}$ where a, b and c are integers to be found.
(C4 June 2019, Q3)
21. (a) Prove, by using logarithms, that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(2^{x}\right)=2^{x} \ln 2 \tag{3}
\end{equation*}
$$

The curve C has the equation

$$
2 x+3 y^{2}+3 x^{2} y+12=4 \times 2^{x}
$$

The point P, with coordinates $(2,0)$, lies on C.
(b) Find an equation of the tangent to C at P.
(IAL C34 Jan 2014, Q5)
22. A curve C has the equation

$$
x^{3}-3 x y-x+y^{3}-11=0
$$

Find an equation of the tangent to C at the point $(2,-1)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(IAL C34 June 2014, Q2)
23. Given $x=\tan ^{2} 4 y, 0<y<\frac{\pi}{8}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as a function of x.

Write your answer in the form $\frac{1}{A\left(x^{p}+x^{q}\right)}$, where A, p and q are constants to be found.
(IAL C34 Jan 2015, Q6)
24. A curve has equation

$$
4 x^{2}-y^{2}+2 x y+5=0
$$

The points P and Q lie on the curve.
Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ at P and at Q,
(a) use implicit differentiation to show that $y-6 x=0$ at P and at Q.
(b) Hence find the coordinates of P and Q.
(IAL C34 June 2015, Q1)
25. A curve C has equation

$$
3^{x}+6 y=\frac{3}{2} x y^{2}
$$

Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point on C with coordinates $(2,3)$. Give your answer in the form $\frac{a+\ln b}{8}$, where a and b are integers.
(IAL C34 Jan 2016, Q3)
26. A curve C has equation

$$
3 x^{2}+2 x y-2 y^{2}+4=0
$$

Find an equation for the tangent to C at the point $(2,4)$, giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.
(IAL C34 June 2016, Q1)
27. Find an equation of the tangent to the curve

$$
x^{3}+3 x^{2} y+y^{3}=37
$$

at the point $(1,3)$. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(IAL C34 Jan 2017, Q1)
28. A curve C has equation

$$
3 x^{2}+2 x y-2 y^{2}+4=0
$$

Find an equation for the tangent to C at the point (2,4), giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.
(IAL C34 June 2017, Q1)
29. The curve C has equation

$$
y^{3}+x^{2} y-6 x=0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Hence find the exact coordinates of the points on C for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
(IAL C34 Oct 2017, Q2)
30. A curve C has equation

$$
3^{x}+x y=x+y^{2}, \quad y>1
$$

The point P with coordinates $(4,11)$ lies on C.
Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point P.
Give your answer in the form $a+b \ln 3$, where a and b are rational numbers.
(IAL C34 Jan 2018, Q1)
31. The curve C satisfies the equation

$$
x \mathrm{e}^{5-2 y}-y=0 \quad x>0, \quad y>0
$$

The point P with coordinates $\left(2 \mathrm{e}^{-1}, 2\right)$ lies on C.
The tangent to C at P cuts the x-axis at the point A and cuts the y-axis at the point B.
Given that O is the origin, find the exact area of triangle $O A B$, giving your answer in its simplest form.
(IAL C34 June 2018, Q10)
32. A curve C has equation

$$
x^{3}-4 x y+2 x+3 y^{2}-3=0
$$

Find an equation of the normal to C at the point $(-3,2)$, giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.
(IAL C34 Oct 2018, Q10)
33.

The curve C has equation

$$
3 y \mathrm{e}^{-2 x}=4 x^{2}+y^{2}+2
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P on C has coordinates $(0,2)$.
(b) Find the equation of the normal to C at P giving your answer in the form $y=m x+c$, where m and c are constants to be found.
(IAL C34 Jun 2019, Q4)
34.

Figure 1
Figure 1 shows a sketch of part of the curve with equation

$$
2 x^{2}+y^{3}=k x y
$$

where k is a positive constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x, y and k.

The line l is parallel to the y-axis and touches the curve at the point P, as shown in Figure 1.
(b) Find, in terms of k, the coordinates of the point P.
35. The curve C has equation

$$
81 y^{3}+64 x^{2} y+256 x=0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Hence find the coordinates of the points on C where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$

