Edexcel

Pure Mathematics

Year 2

Implicit Differentiation

Past paper questions from Core Maths 4 and IAL C34

Edited by: K V Kumaran

1. A curve has equation

$$x^2 + 2xy - 3y^2 + 16 = 0.$$

Find the coordinates of the points on the curve where $\frac{dy}{dx} = 0$.

(C4 June 2005, Q2)

(7)

2. A curve *C* is described by the equation

$$3x^2 + 4y^2 - 2x + 6xy - 5 = 0.$$

Find an equation of the tangent to C at the point (1, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers. (7)

(C4 Jan 2006, Q1)

3. A curve *C* is described by the equation

$$3x^2 - 2y^2 + 2x - 3y + 5 = 0.$$

Find an equation of the normal to C at the point (0, 1), giving your answer in the form ax + by + c = 0, where a, b and c are integers. (7)

(C4 June 2006, Q1)

- **4.** A set of curves is given by the equation $\sin x + \cos y = 0.5$.
 - (a) Use implicit differentiation to find an expression for $\frac{dy}{dx}$. (2)

For $-\pi < x < \pi$ and $-\pi < y < \pi$,

(b) find the coordinates of the points where $\frac{dy}{dx} = 0$. (5)

(C4 Jan 2007, Q5)

5. A curve is described by the equation

$$x^3 - 4y^2 = 12xy.$$

- (a) Find the coordinates of the two points on the curve where x = -8. (3)
- (b) Find the gradient of the curve at each of these points.

(C4 Jan 2008, Q5)

(6)

- 6. A curve has equation $3x^2 y^2 + xy = 4$. The points *P* and *Q* lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at *P* and at *Q*.
 - (a) Use implicit differentiation to show that y 2x = 0 at P and at Q. (6)
 - (b) Find the coordinates of P and Q. (3)

(C4 June 2008, Q4)

- 7. A curve C has the equation $y^2 3y = x^3 + 8$.
 - (a) Find $\frac{dy}{dx}$ in terms of x and y. (4)
 - (b) Hence find the gradient of C at the point where y = 3.

(C4 Jan 2009, Q1)

- **8.** The curve C has the equation $ye^{-2x} = 2x + y^2$.
 - (a) Find $\frac{dy}{dx}$ in terms of x and y. (5)

The point P on C has coordinates (0, 1).

(b) Find the equation of the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers. (4)

(C4 June 2009, Q4)

9. A curve *C* has equation

$$2^x + y^2 = 2xy.$$

Find the exact value of $\frac{dy}{dx}$ at the point on C with coordinates (3, 2). (7)

(C4 June 2010, Q3)

10. Find the gradient of the curve with equation

$$ln y = 2x ln x, x > 0, y > 0,$$

at the point on the curve where x = 2. Give your answer as an exact value.

(7)

(C4 June 2011, Q5)

11. The curve C has the equation $2x + 3y^2 + 3x^2y = 4x^2$.

The point P on the curve has coordinates (-1, 1).

(a) Find the gradient of the curve at P.

(5)

(b) Hence find the equation of the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers. (3)

(C4 June 2012, Q1)

12. A curve is described by the equation

$$x^2 + 4xy + y^2 + 27 = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

A point *Q* lies on the curve.

The tangent to the curve at Q is parallel to the y-axis.

Given that the x-coordinate of Q is negative,

(b) use your answer to part (a) to find the coordinates of Q.

(7)

(C4 June 2013, Q7)

13. The curve *C* has equation

$$3^{x-1} + xy - y^2 + 5 = 0$$

Show that $\frac{dy}{dx}$ at the point (1, 3) on the curve C can be written in the form $\frac{1}{\lambda}\ln(\mu e^3)$, where λ and μ are integers to be found. (7)

(C4 June 2013 R, Q2)

14. A curve *C* has the equation

$$x^3 + 2xy - x - y^3 - 20 = 0$$

(a) Find
$$\frac{dy}{dx}$$
 in terms of x and y. (5)

(b) Find an equation of the tangent to C at the point (3, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers. (2)

(C4 June 2014, Q1)

$$x^2 + y^2 + 10x + 2y - 4xy = 10$$

(a) Find
$$\frac{dy}{dx}$$
 in terms of x and y, fully simplifying your answer. (5)

(b) Find the values of y for which
$$\frac{dy}{dx} = 0$$
. (5)

(C4 June 2014_R, Q3)

16. The curve C has equation

$$x^2 - 3xy - 4y^2 + 64 = 0.$$

(a) Find
$$\frac{dy}{dx}$$
 in terms of x and y. (5)

(b) Find the coordinates of the points on C where
$$\frac{dy}{dx} = 0$$
. (6)

(C4 June 2015, Q2)

17. The curve C has equation

$$2x^2y + 2x + 4y - \cos(\pi y) = 17.$$

(a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

(5)

The point *P* with coordinates $\left(3, \frac{1}{2}\right)$ lies on *C*.

The normal to C at P meets the x-axis at the point A.

(b) Find the x coordinate of A, giving your answer in the form $\frac{a\pi + b}{c\pi + d}$, where a, b, c and d are integers to be determined.

(4)

(C4 June 2016, Q3)

18. The curve C has equation

$$4x^2 - y^3 - 4xy + 2^y = 0$$

The point P with coordinates (-2, 4) lies on C.

(a) Find the exact value of $\frac{dy}{dx}$ at the point P.

(6)

The normal to C at P meets the y-axis at the point A.

(b) Find the y coordinate of A, giving your answer in the form $p + q \ln 2$, where p and q are constants to be determined.

(3)

(C4 June 2017, Q4)

19.

The curve C has equation

$$x^2 + xy + y^2 - 4x - 5y + 1 = 0$$

(a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

(5)

(b) Find the x coordinates of the two points on C where $\frac{dy}{dx} = 0$

Give exact answers in their simplest form.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(5)

(C4 June 2018, Q2)

The curve C has equation

$$x^2 - y^3 - x - x \sin(\pi y) = -2$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

The point P with coordinates (3, 2) lies on C.

The tangent to C at P meets the y-axis at the point Q.

(b) Find the y coordinate of Q, giving your answer in the form $\frac{a\pi + b}{\pi + c}$ where a, b and c are integers to be found.

(3)

(C4 June 2019, Q3)

21. (a) Prove, by using logarithms, that

$$\frac{\mathrm{d}}{\mathrm{d}x}(2^x) = 2^x \ln 2$$

(3)

The curve C has the equation

$$2x + 3y^2 + 3x^2y + 12 = 4 \times 2^x$$

The point P, with coordinates (2, 0), lies on C.

(b) Find an equation of the tangent to C at P.

(6)

(IAL C34 Jan 2014, O5)

22. A curve C has the equation

$$x^3 - 3xy - x + y^3 - 11 = 0$$

Find an equation of the tangent to C at the point (2, -1), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(6)

(IAL C34 June 2014, Q2)

23. Given $x = \tan^2 4y$, $0 < y < \frac{\pi}{8}$, find $\frac{dy}{dx}$ as a function of x.

Write your answer in the form $\frac{1}{A(x^p + x^q)}$, where A, p and q are constants to be found.

(5)

(IAL C34 Jan 2015, Q6)

24. A curve has equation

$$4x^2 - y^2 + 2xy + 5 = 0$$

The points P and Q lie on the curve.

Given that $\frac{dy}{dx} = 2$ at P and at Q,

(a) use implicit differentiation to show that y - 6x = 0 at P and at Q.

(6)

(b) Hence find the coordinates of P and Q.

(3)

(IAL C34 June 2015, Q1)

25. A curve *C* has equation

$$3^x + 6y = \frac{3}{2}xy^2$$

Find the exact value of $\frac{dy}{dx}$ at the point on C with coordinates (2, 3). Give your answer in

the form $\frac{a + \ln b}{8}$, where a and b are integers.

(IAL C34 Jan 2016, Q3)

26. A curve *C* has equation

$$3x^2 + 2xy - 2y^2 + 4 = 0$$

Find an equation for the tangent to C at the point (2, 4), giving your answer in the form ax + by + c = 0 where a, b and c are integers.

(6)

(7)

(IAL C34 June 2016, Q1)

27. Find an equation of the tangent to the curve

$$x^3 + 3x^2y + y^3 = 37$$

at the point (1, 3). Give your answer in the form ax + by + c = 0, where a, b and c are integers.

(6)

(IAL C34 Jan 2017, Q1)

28. A curve *C* has equation

$$3x^2 + 2xy - 2y^2 + 4 = 0$$

Find an equation for the tangent to C at the point (2, 4), giving your answer in the form ax + by + c = 0 where a, b and c are integers.

(6)

(IAL C34 June 2017, Q1)

29. The curve C has equation

$$y^3 + x^2y - 6x = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

(b) Hence find the exact coordinates of the points on C for which $\frac{dy}{dx} = 0$

(6)

(IAL C34 Oct 2017, Q2)

30. A curve *C* has equation

$$3^x + xy = x + y^2, \qquad y > 1$$

The point P with coordinates (4, 11) lies on C.

Find the exact value of $\frac{dy}{dx}$ at the point P.

Give your answer in the form $a + b \ln 3$, where a and b are rational numbers.

(6)

(IAL C34 Jan 2018, Q1)

31. The curve C satisfies the equation

$$xe^{5-2y} - y = 0$$

$$x > 0$$
, $y > 0$

The point P with coordinates $(2e^{-1}, 2)$ lies on C.

The tangent to C at P cuts the x-axis at the point A and cuts the y-axis at the point B.

Given that *O* is the origin, find the exact area of triangle *OAB*, giving your answer in its simplest form.

(7)

(IAL C34 June 2018, Q10)

32. A curve *C* has equation

$$x^3 - 4xy + 2x + 3y^2 - 3 = 0$$

Find an equation of the normal to C at the point (-3, 2), giving your answer in the form ax + by + c = 0 where a, b and c are integers.

(7)

(IAL C34 Oct 2018, Q10)

33.

The curve C has equation

$$3ye^{-2x} = 4x^2 + y^2 + 2$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

The point P on C has coordinates (0, 2).

(b) Find the equation of the normal to C at P giving your answer in the form y = mx + c, where m and c are constants to be found.

(3)

(IAL C34 Jun 2019, Q4)

34.

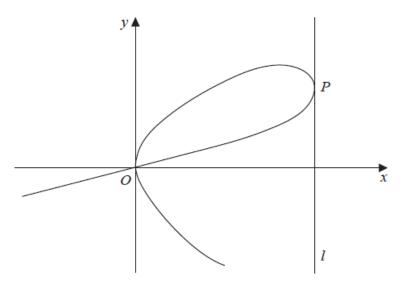


Figure 1

Figure 1 shows a sketch of part of the curve with equation

$$2x^2 + y^3 = kxy$$

where k is a positive constant.

(a) Find $\frac{dy}{dx}$ in terms of x, y and k.

(4)

The line l is parallel to the y-axis and touches the curve at the point P, as shown in Figure 1.

(b) Find, in terms of k, the coordinates of the point P.

(5)

(IAL C34 Oct 2019, Q11)

35. The curve C has equation

$$81y^3 + 64x^2y + 256x = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

(b) Hence find the coordinates of the points on C where $\frac{dy}{dx} = 0$

(6)

(IAL C34 Jan 2019, Q4)