Edexcel

New GCE A Level Maths workbook Trigonometry 02

Edited by: K V Kumaran

Trigonometry

Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.
Knowledge of graphs of curves with equations such as
$y=3 \sin x, y=\sin \left(x+30^{\circ}\right), y=\sin 2 x$ is expected.
Knowledge and use of $\tan \theta=\frac{\sin \theta}{\cos \theta}$, and
$\sin ^{2} \theta+\cos ^{2} \theta=1$.

Solution of simple trigonometric equations in a given interval.

Candidates should be able to solve equations such as
$\sin \left(x+45^{\circ}\right)=\frac{3}{4}$ for $0<x<360$,
$\cos \left(x+30^{\circ}\right)=\frac{1}{2}$ for $-180^{\circ}<x<180^{\circ}$,
$\tan 2 x=1$ for $90^{\circ}<x<270^{\circ}$,
$6 \cos ^{2} x^{\circ}+\sin x^{\circ}-5=0, \quad 0 \leq x<360$,
$\sin ^{2}\left(x+30^{\circ}\right)=\frac{1}{2}$ for $-180 \leq x<180$.

Using and Understanding Trig Functions for Positive and Negative Angles

The Three Trigonometric ratios are

$$
\sin \theta=\frac{o p p}{h y p} \quad \cos \theta=\frac{a d j}{h y p} \quad \tan \theta=\frac{o p p}{a d j}
$$

The $x-y$ plane is divided into 4 quadrants

Example 1.
Draw the line OP, where O is the origin, and the angle θ makes an angle with the positive x -axis.
a) $+70^{\circ}$
b) -200°

Equivalent Trigonometric Ratios

For all values of θ, the definition of $\sin \theta, \cos \theta$ and $\tan \theta$ are taken to be...

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \quad \text { where } x \text { and } y \text { are the coordinates of } \mathrm{P} \text { and } \mathrm{r} \text { is the length } \mathrm{OP} \\
& \cos \theta=\frac{x}{r} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

If θ is acute

If θ is obtuse

Some definitions are:-
$\sin 90^{\circ}=1$
$\sin \left(-90^{\circ}\right)=-1$
$\sin 180^{\circ}=0$
$\sin \left(-180^{\circ}\right)=0$
$\sin 270^{\circ}=-1$
$\sin \left(-270^{\circ}\right)=1$
$\cos 180^{\circ}=-1$
$\cos \left(-180^{\circ}\right)=-1$
$\cos \left(-90^{\circ}\right)=0$
$\cos 90^{\circ}=0$
$\cos 450^{\circ}=0$
$\cos \left(-450^{\circ}\right)=0$

Why?
$\sin \theta=\frac{y}{r} \quad$ for $\sin 90^{\circ}$
$\sin 90^{\circ}=\frac{r}{r}$
$\sin 90^{\circ}=1$

$$
\begin{aligned}
& 810^{\circ}=360+360+90 \\
& \cos \theta=\frac{x}{r} \\
& \cos 810^{\circ}=\frac{0}{r} \\
& \cos 810^{\circ}=0
\end{aligned}
$$

For Tan

a) Tan is indeterminate when θ is an odd multiple of 90°.

When $\mathrm{y}=0 \quad \tan \theta=0$. This is because when P is at $(\mathrm{r}, 0)$ or $(-\mathrm{r}, 0)$

b) $\operatorname{Tan} \theta=0 \quad$ When θ is 0° or an even multiple of 90°

Expressing Angles in Term of Equivalent Acute Trigonometric Ratios

Angle	Positive	Negative
$0-90$	All	None
$90-180$	Sin	Cos,Tan
$180-270$	Tan	Sin,Cos
$270-360$	Cos	Sin, Tan

$180^{\circ} \longrightarrow \operatorname{Sin}, \begin{gathered}\text { Tan, } \operatorname{Cos} \\ \operatorname{Tan} \\ \operatorname{Cos}\end{gathered}$
270°

Learn the saying "All Sinners Tan Cos they can!!

Why?

In 3rd Quadrant: -

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & =\frac{-v e}{+v e}=-v e \\
\cos \theta=\frac{x}{r} & =\frac{-v e}{+v e}=-v e \\
\tan \theta=\frac{y}{x} & =\frac{-v e}{-v e}=+v e
\end{array}
$$

Similar Angles

for $\sin \theta=\frac{y}{r}$ so: -
$\sin \theta=\frac{b}{r} \quad \sin \theta=\sin 180-\theta$
$\sin (180-\theta)=\frac{b}{r} \quad \sin 180+\theta=\sin 360-\theta$
$\sin (180+\theta)=-\frac{b}{r} \quad \sin 180+\theta=-\sin \theta$
$\sin (360-\theta)=-\frac{b}{r} \quad \sin 360-\theta=-\sin \theta \quad$ etc
The results for sine, cosine and tangent are:-
Quadrant 2

$$
\begin{aligned}
& \sin (180-\theta)=\sin \theta \\
& \cos (180-\theta)=-\cos \theta \\
& \tan (180-\theta)=-\tan \theta
\end{aligned}
$$

Quadrant 3

$$
\begin{aligned}
& \sin (180+\theta)=-\sin \theta \\
& \cos (180+\theta)=-\cos \theta \\
& \tan (180+\theta)=\tan \theta
\end{aligned}
$$

Quadrant 4

$$
\begin{aligned}
& \sin ((360-\theta)=-\sin \theta \\
& \cos (360-\theta)=\cos \theta \\
& \tan (360-\theta)=-\tan \theta
\end{aligned}
$$

Notice the connection with the quadrants.

It is telling us where the answers will be positive or negative.

In the 3 rd quadrant \sin is negative

$$
\begin{aligned}
& =-\sin \theta \\
& =-\sin 60^{\circ}
\end{aligned}
$$

Example 2.
Express in terms of trigonometric ratios of acute angles, the angle $\tan \left(530^{\circ}\right)$
In the 2 nd quadrant \tan is negative

$$
\begin{aligned}
& =-\tan \theta \\
& =-\tan 10^{\circ}
\end{aligned}
$$

How to find 30° and 60° angles

Take an equilateral triangle with sides 2 cm (you could do this with any equilateral triangle)
$\mathrm{AD}=\sqrt{2^{2}-1^{2}}$
$\mathrm{AD}=\sqrt{3} \mathrm{~cm}$

$\therefore \quad \sin 30^{\circ}=\frac{1}{2}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 60^{\circ}=\frac{1}{2}$
$\tan 60^{\circ}=\sqrt{3}$

How to find a 45° angle

Take an isosceles right angled triangle with sides 1 cm (again you can use any isosceles triangle)
$\mathrm{AB}=\sqrt{1^{2}-1^{2}}$
$\mathrm{AB}=\sqrt{2} \mathrm{~cm}$
$\therefore \quad \sin 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\tan 45^{\circ}=\frac{1}{1}=1$

Example 1. Find the exact value of $\sin 135^{\circ}$

$$
\begin{aligned}
\sin 135^{\circ} & =\sin 45^{\circ} \quad \sin \text { is positive in 2nd quadrant } \\
& =\frac{\sqrt{2}}{2}
\end{aligned}
$$

Example 2.

Find the exact value of $\tan 300^{\circ}$

$$
\begin{aligned}
\tan 300^{\circ} & =-\tan \theta \quad \tan \text { is negative in 4th quadrant } \\
& =-\tan 60^{\circ}
\end{aligned}
$$

Remember to first work out the value of θ, then work out whether the quadrant is positive or negative.

Recognising Trigonometric Graphs

$y=\sin x$

The graph is periodic, the period is 360° or 2π radians, the graph is symmetrical about $\theta=90^{\circ}$

$y=\cos x$

The graph is periodic, the period is 360° or 2π radians, the graph is the same as the cos graph which has been translated 90° to the left, the graph is symmetrical about $\theta=0^{\circ}$

$y=\tan x$

The graph is periodic, the period is 180° or 2π radians, asymptotes occur at 90° and at odd multiples of 90° there after.

These follow the same rules as we had for normal graphs.
a) $y=\sin x+1$

Move the graph up $1=$ add 1 to the y coordinate
b) $y=\cos \left(x+90^{\circ}\right)$

Move the graph left $90^{\circ}=$ subtract 90° to the x coordinate
c) $y=3 \cos x$

Stretch the graph vertically by $3=$ multiply the y coordinate by 3
d) $y=\sin 2 x$

Stretch the graph horizontally by $1 / 2=$ multiply the x coordinate by 2
e) $y=-\tan x$

Reflect the graph in the x -axis $=$ change the sign of the y coordinate
f) $y=\cos (-x)$

Reflect the graph in the y-axis $=$ change the sign of the x coordinate

Solving Trigonometric Equations in Degrees

Using the relationship between Sin, Cos and Tan

1. For all values of θ (except for when $\tan \theta$ is not defined and where $\cos \theta=0$)

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

Why?

$$
\begin{aligned}
& \tan \theta=\frac{y}{x} \\
& \frac{y}{x}=\frac{y}{r} \times \frac{r}{x} \quad \text { as } \frac{x}{r}=\cos \theta \quad \text { and } \frac{y}{x}=\sin \theta \\
& \therefore \frac{y}{x}=\sin \theta \times \frac{1}{\cos \theta} \\
& \therefore \frac{y}{x}=\frac{\sin \theta}{\cos \theta} \\
& \text { hence } \tan \theta=\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

2. For all values of $\theta, \cos ^{2} \theta+\sin ^{2} \theta=1$

Why?

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \text { so } \quad y=r \sin \theta \\
\cos \theta=\frac{x}{r} & \text { so } \quad y=r \cos \theta
\end{array}
$$

Using Pythagoras

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& (r \cos \theta)^{2}+(r \sin \theta)^{2}=r^{2} \\
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=r^{2} \\
& \cos ^{2} \theta+\sin \theta^{2}=1
\end{aligned}
$$

Example 1:

$$
\begin{aligned}
& \text { Simplify } \sin ^{2} 2 \theta+\cos ^{2} 2 \theta \\
& \text { as } \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \quad \sin ^{2} 2 \theta+\cos ^{2} 2 \theta=1
\end{aligned}
$$

Example 2: \quad Show that $\frac{\cos ^{4} \theta-\sin ^{4} \theta}{\cos ^{2} \theta}=1-\tan ^{2} \theta$

$$
\frac{\cos ^{4} \theta-\sin ^{4} \theta}{\cos ^{2} \theta}=\frac{\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{\cos ^{2} \theta} \longleftarrow \begin{aligned}
& \text { Use } \\
& \text { difference } \\
& \text { of } 2 \text { squares }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { as } \sin ^{2} \theta+\cos ^{2} \theta=1 & =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
\text { as } \frac{\sin \theta}{\cos \theta}=\tan \theta & =1-\tan ^{2} \theta
\end{array}
$$

Example 3: Given $\cos \theta=-\frac{3}{5}$ and that θ is reflex, find the value of $\sin \theta$ and $\tan \theta$ $\sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\text { as } \cos \theta=-\frac{3}{5} \quad \text { so } \cos ^{2} \theta=\left(-\frac{3}{5}\right)^{2}
$$

$$
\therefore \sin ^{2} \theta+\left(-\frac{3}{5}\right)^{2}=1
$$

$$
\begin{aligned}
\sin ^{2} \theta & =\frac{16}{25} \\
\sin \theta & =\frac{4}{5}
\end{aligned}
$$

As cos was negative in the question and reflex, it must be in quadrant 3

$$
\begin{aligned}
\sin \theta & =-\frac{4}{5} \\
\tan \theta & =\frac{\sin \theta}{\cos \theta} \\
& =\frac{-0.8}{-0.6} \\
& =\frac{4}{3}
\end{aligned}
$$

Example 4: Given that $\sin \theta=\frac{2}{5}$ and it is obtuse. Find the exact value of $\cos \theta$

$$
\begin{aligned}
& x=\sqrt{5^{2}-2^{2}} \\
& x=\sqrt{21}
\end{aligned}
$$

$\therefore \cos \theta=\frac{\sqrt{21}}{5}$
As $\sin \theta$ is positive and obtuse it must be in the $2^{\text {nd }}$ quadrant.
$\therefore \cos \theta=-\frac{\sqrt{21}}{5}$ because \cos is negative in the 2 nd quadrant

Solving Simple Trigonometric Equations

If you have an equation like $\sin x=0.7$ we can show this on a graph

Where the 2 lines intersect are the answers.
Or we can use algebra and our knowledge of trigonometric functions and quadrants.

Angle	positive	negative	How to calculate answer
$0-90^{\circ}$	All	None	Keep angle
$90^{\circ}-180^{\circ}$	Sin	Tan, \cos	$180^{\circ}-$ angle
$180^{\circ}-270^{\circ}$	Tan	Sin, cos	$180^{\circ}+$ angle
$270^{\circ}-360^{\circ}$	Cos	Sin, tan	$360^{\circ}-$ angle

Example 1: \quad Find the solution to $\sin \theta=0.6$ for $0 \leq \theta \leq 360^{\circ}$

$$
\begin{aligned}
\sin \theta & =0.6 \\
\theta & =36 \cdot 9^{\circ}(1 \mathrm{dp})
\end{aligned}
$$

$\sin \theta$ is positive in quadrants 1 and 2

$$
\mathrm{Q} 1=36 \cdot 9^{\circ}
$$

$$
\mathrm{Q} 2=180-36 \cdot 9
$$

$$
=143 \cdot 1^{\circ}
$$

\therefore The solutions are $36 \cdot 9^{\circ}$ \& $143 \cdot 1^{\circ}$

Example 2:

Find the solution to $\tan \theta=-\sqrt{3}$ for $0 \leq \theta \leq 360^{\circ}$

$$
\begin{aligned}
\tan \theta & =\sqrt{3} \quad \quad \text { ignore the signs to find the initial angle } \theta \\
\theta & =60^{\circ}
\end{aligned}
$$

\tan is negative in quadrants 2 and 4

$$
\begin{aligned}
\mathrm{Q} 2 & =180-60 \\
& =120^{\circ} \\
\mathrm{Q} 4 & =360-60 \\
& =300^{\circ}
\end{aligned}
$$

The solutions are $120^{\circ} \& 300^{\circ}$
If you need to find more solutions because one of your initial answers lie outside your region, then you can plus or minus the period of the graph.

What's that?

$$
\cos \theta \quad \theta=1 \theta
$$

$$
\text { so } \frac{360}{1}=360^{\circ}
$$

The period is 360° so you can either add or subtract 360° to find the other solutions
$\sin 3 \theta$

$$
\text { so } \frac{360}{3}=120^{\circ}
$$

The 3 means it has been squashed horizontally
The period here is 120° so you can either add or subtract 120° to find other solutions

Solving Harder Trigonometric Equations in Degrees

The key to solving these equations is to try and rearrange the original equation into the form $\operatorname{Sin} \theta=\mathrm{C}$, this will then give you the value of θ. If you have $\sin (\theta+\mathrm{C})=\mathrm{k}$ then you leave the brackets till the end

Example 1: \quad Find the solution to $3 \cos \left(x-30^{\circ}\right)=1$ for $0 \leq \theta \leq 360^{\circ}$

$$
\begin{aligned}
3 \cos (x-30) & =1 \\
\cos (x-30) & =\frac{1}{3} \\
(x-30) & =70.53^{\circ} \\
\therefore \quad \theta & =70.53
\end{aligned}
$$

cos is positive in quadrants 1 and 4
Q1 $\quad x-30=70.53$

$$
x=100.53^{\circ}
$$

Q2 $\quad x-30=360-70.53$
$x-30=289.47$
$x=319.47^{\circ}$
\therefore The solutions are $100.53^{\circ} \& 319.47^{\circ}$

Solving Harder Trigonometric Equations

You need to solve them the same as any other quadratic equation
Example 1:

$$
\begin{aligned}
& 2 \cos ^{2} \theta-\cos \theta=1 \text { solve for } 0 \leq x \leq 360^{\circ} \\
& 2 \cos ^{2} \theta-\cos \theta=1 \\
& (2 \cos \theta+1)(\cos \theta-1)=0 \\
& \cos \theta=-\frac{1}{2} \text { or } \cos \theta=1 \\
& \text { using } \cos \theta=\frac{1}{2} \\
& \quad \text { using } \cos \theta=1 \\
& \theta=60^{\circ}
\end{aligned} \quad \theta=0 .
$$

$\cos \theta$ is negative in quadrants $2 \& 3$
Q2 $\theta=180-60$
Q1 $\theta=0^{\circ}$
$\theta=120^{\circ}$
Q3 $\theta=180+60$
$\theta=240^{\circ}$
Q4 $\quad \theta=360-0$

$$
\theta=360^{\circ}
$$

The solutions are $0^{\circ}, 120^{\circ}, 240^{\circ}, 360^{\circ}$

Be aware you may need to use $\sin ^{2} x+\cos ^{2} x=1$ to simplify before you can factorise.

Homework Questions 1 - Solving Trig Equations in Degrees

Solve the following equations for $0 \leq x \leq 360^{\circ}$
a) $\sin x=0.3$
b) $\cos x=0.7$
c) $\sin x=0.54$
d) $\tan x=-0.6$

e) $\sin x=-0.92$
g) $\cos x=-0.37$

h) $\tan x=0.56$

i) $\sin x=0.87$

j) $\tan x=-0.03$

Homework Questions 2 - Solving Trig Equations in Degrees

Solve the following equations for $-180<x<180$
a) $\sin x=0.54$
b) $\quad \cos x=0.93$
c) $\tan x=-0.11$
\square
d) $\cos x=0.69$
\square
e) $\sin x=0.41$
g) $\cos x=0.86$
h) $\tan x=0.47$
i) $\sin x=-0.3$

j) $\cos x=-0.66$

Solve the following equations for $0 \leq x \leq 360^{\circ}$
a) $\sin \left(x+20^{\circ}\right)=0.43$
b) $\quad \cos \left(x-50^{\circ}\right)=0.76$
c) $3 \sin x=2.6$
d) $5 \sin x=4.42$

e) $2 \tan \left(x+10^{\circ}\right)=-1.3$
f) $3 \cos \left(x-30^{\circ}\right)=2 \cdot 6$
g) $4 \cos \left(x-18^{\circ}\right)+2=5$
h) $2 \tan \left(x+60^{\circ}\right)-3=-1 \cdot 2$

i) $2 \cos \left(x+55^{\circ}\right)-0 \cdot 5=-0 \cdot 5$

j) $5 \sin \left(x+17^{\circ}\right)+3=4.6$

Homework Questions 5 - Solving Trig Equations with more than 2
 Solutions

Solve the following equations for $0 \leq x \leq 180^{\circ}$
a) $\sin 3 x=0.96$
b) $\quad \cos 2 x=0.48$
c) $\tan 2 x=-0.55$
d) $\sin 4 x=0.8$

Solve the following equations for $0 \leq x \leq \pi$
e) $\sin 2 x=0.77$
\square
f) $\cos 3 x=-0.84$

g) $\tan 3 x=0.94$
h) $\cos 2 x=-0.86$

Solve the following equations for $-180^{\circ} \leq x \leq 180^{\circ}$
i) $3 \sin 2 x=1.6$
j) $2 \cos 2 x=1 \cdot 6$
k) $4 \sin 3 x=-3.66$

1) $2 \tan 2 x=1 \cdot 18$

Solve the following equations for $-180^{\circ} \leq x \leq 180^{\circ}$
m) $3 \sin 2 x-1=-2$
n) $4 \cos 3 x+2=3$

Solve the following equations for $0 \leq x \leq 360^{\circ}$
a) $\sin \theta=6 \cos \theta$
b) $6+\cos \theta=1+6 \sin ^{2} \theta$

c) $2-\sin \theta=1+2 \cos ^{2} \theta$

d) $13-15 \cos ^{2} \theta+7 \sin \theta=0$

1. Solve, for $0 \leq x \leq 180^{\circ}$, the equation
(a) $\sin \left(x+10^{\circ}\right)=\frac{\sqrt{ } 3}{2}$,
(b) $\cos 2 x=-0.9$, giving your answers to 1 decimal place.
2. (a) Find all the values of θ, to 1 decimal place, in the interval $0^{\circ} \leq \theta<360^{\circ}$ for which

$$
5 \sin \left(\theta+30^{\circ}\right)=3
$$

(b) Find all the values of θ, to 1 decimal place, in the interval $0^{\circ} \leq \theta<360^{\circ}$ for which

$$
\tan ^{2} \theta=4
$$

3. Solve, for $0 \leq x<360^{\circ}$,
(a) $\sin \left(x-20^{\circ}\right)=\frac{1}{\sqrt{2}}$,
(b) $\cos 3 x=-\frac{1}{2}$.
4. (a) Given that $\sin \theta=5 \cos \theta$, find the value of $\tan \theta$.
(b) Hence, or otherwise, find the values of θ in the interval $0 \leq \theta<360^{\circ}$ for which

$$
\sin \theta=5 \cos \theta,
$$

giving your answers to 1 decimal place.
5. (a) Show that the equation

$$
5 \cos ^{2} x=3(1+\sin x)
$$

can be written as

$$
5 \sin ^{2} x+3 \sin x-2=0 .
$$

(b) Hence solve, for $0 \leq x<360^{\circ}$, the equation

$$
5 \cos ^{2} x=3(1+\sin x)
$$

giving your answers to 1 decimal place where appropriate.
6. (a) Show that the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1
$$

can be written as

$$
5 \sin ^{2} \theta=3
$$

(b) Hence solve, for $0^{\circ} \leq \theta<360^{\circ}$, the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1,
$$

giving your answer to 1 decimal place.
7. (a) Show that the equation

$$
4 \sin ^{2} x+9 \cos x-6=0
$$

can be written as

$$
4 \cos ^{2} x-9 \cos x+2=0
$$

(b) Hence solve, for $0 \leq x<720^{\circ}$,

$$
4 \sin ^{2} x+9 \cos x-6=0,
$$

giving your answers to 1 decimal place.
8. (i) Solve, for $-180^{\circ} \leq \theta<180^{\circ}$,

$$
(1+\tan \theta)(5 \sin \theta-2)=0 .
$$

(ii) Solve, for $0 \leq x<360^{\circ}$,

$$
4 \sin x=3 \tan x \text {. }
$$

9. (a) Show that the equation

$$
5 \sin x=1+2 \cos ^{2} x
$$

can be written in the form

$$
2 \sin ^{2} x+5 \sin x-3=0
$$

(b) Solve, for $0 \leq x<360^{\circ}$,

$$
2 \sin ^{2} x+5 \sin x-3=0
$$

10. (a) Given that $5 \sin \theta=2 \cos \theta$, find the value of $\tan \theta$.
(b) Solve, for $0 \leq x<360^{\circ}$,
$5 \sin 2 x=2 \cos 2 x$,
giving your answers to 1 decimal place.
11. (a) Show that the equation

$$
\begin{gathered}
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4 \\
4 \sin ^{2} x+7 \sin x+3=0 . \\
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
\end{gathered}
$$

can be written in the form
(b) Hence solve, for $0 \leq x<360^{\circ}$, giving your answers to 1 decimal place where appropriate.
12. (a) Solve for $0 \leq x<360^{\circ}$, giving your answers in degrees to 1 decimal place, $3 \sin \left(x+45^{\circ}\right)=2$.
(b) Find, for $0 \leq x<2 \pi$, all the solutions of
$2 \sin ^{2} x+2=7 \cos x$,
giving your answers in radians.
You must show clearly how you obtained your answers.
13. (i) Find the solutions of the equation $\sin \left(3 x-15^{\circ}\right)=\frac{1}{2}$, for which $0 \leq x \leq 180^{\circ}$.
(ii)

Figure 4
Figure 4 shows part of the curve with equation

$$
y=\sin (a x-b), \text { where } a>0,0<b<180 .
$$

The curve cuts the x-axis at the points P, Q and R as shown.
Given that the coordinates of P, Q and R are $(18,0),(108,0)$ and $(198,0)$ respectively, find the values of a and b.
14. (a) Show that the equation

$$
\tan 2 x=5 \sin 2 x
$$

can be written in the form

$$
(1-5 \cos 2 x) \sin 2 x=0
$$

(b) Hence solve, for $0 \leq x \leq 180^{\circ}$,

$$
\tan 2 x=5 \sin 2 x,
$$

giving your answers to 1 decimal place where appropriate.
You must show clearly how you obtained your answers.
15.
(a) Show that the equation

$$
\frac{5+\sin \theta}{3 \cos \theta}=2 \cos \theta, \quad \theta \neq(2 n+1) 90^{\circ}, \quad n \in \varnothing
$$

may be rewritten as

$$
6 \sin ^{2} \theta+\sin \theta-1=0
$$

(b) Hence solve, for $-90^{\circ}<\theta<90^{\circ}$, the equation

$$
\frac{5+\sin \theta}{3 \cos \theta}=2 \cos \theta
$$

Give your answers to one decimal place, where appropriate.
16. (a) Given that $7 \sin x=3 \cos x$, find the exact value of $\tan x$.
(b) Hence solve for $0 \leq \theta<360^{\circ}$ $7 \sin \left(2 \theta+30^{\circ}\right)=3 \cos \left(2 \theta+30^{\circ}\right)$
giving your answers to one decimal place.
17. (i) Showing each step in your reasoning, prove that

$$
(\sin x+\cos x)(1-\sin x \cos x) \equiv \sin ^{3} x+\cos ^{3} x
$$

(ii) Solve, for $0 \leq \theta<360^{\circ}$,

$$
3 \sin \theta=\tan \theta
$$

giving your answers in degrees to 1 decimal place, as appropriate.

