Edexcel New GCE A Level Maths workbook Trigonometry 02

Edited by: K V Kumaran

kumarmaths.weebly.com

1

Trigonometry

Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

Knowledge of graphs of curves with equations such as

y = 3 sin x, y = sin (x+30°), y = sin 2x is expected. Knowledge and use of tan $\theta = \frac{\sin \theta}{\cos \theta}$, and $\sin^2 \theta + \cos^2 \theta = 1$.

Solution of simple trigonometric equations in a given interval.

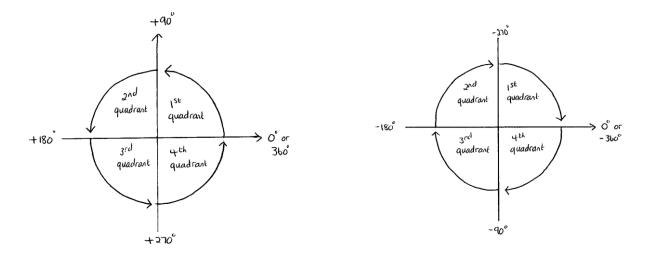
Candidates should be able to solve equations such as $\sin (x+45^{\circ}) = \frac{3}{4}$ for 0 < x < 360, $\cos (x + 30^{\circ}) = \frac{1}{2}$ for $-180^{\circ} < x < 180^{\circ}$, $\tan 2x = 1$ for $90^{\circ} < x < 270^{\circ}$, $6 \cos^{2} x^{\circ} + \sin x^{\circ} - 5 = 0$, $0 \le x < 360$, $\sin^{2} (x+30^{\circ}) = \frac{1}{2}$ for $-180 \le x < 180$.

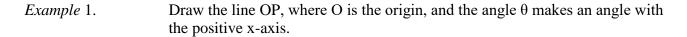
Using and Understanding Trig Functions for Positive and Negative Angles

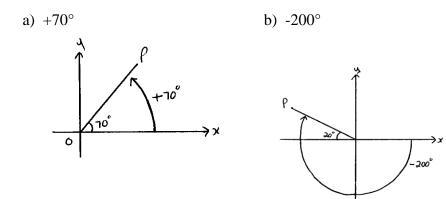
The Three Trigonometric ratios are

$$\sin \theta = \frac{opp}{hyp}$$
 $\cos \theta = \frac{adj}{hyp}$ $\tan \theta = \frac{opp}{adj}$

The x-y plane is divided into 4 quadrants

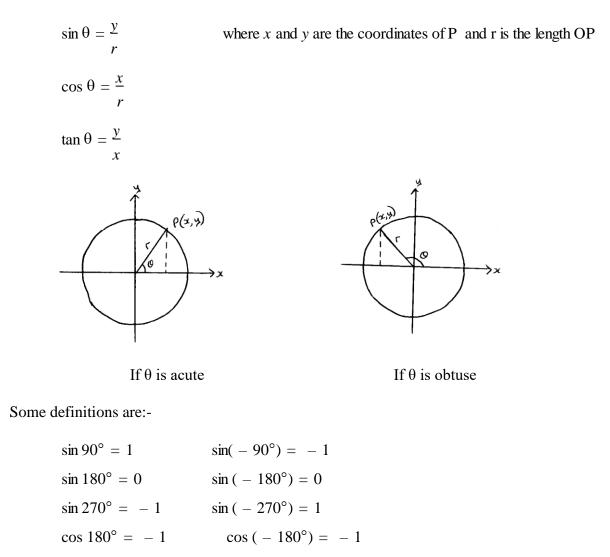






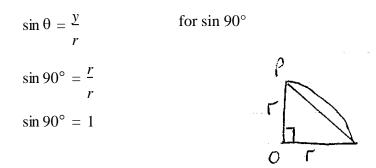
Equivalent Trigonometric Ratios

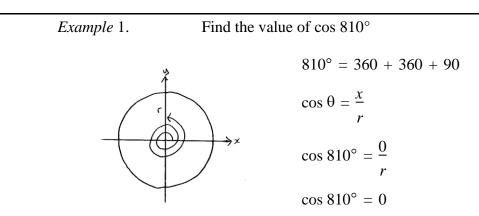
For all values of θ , the definition of sin θ , cos θ and tan θ are taken to be...



 $\cos (-90^{\circ}) = 0$ $\cos 90^{\circ} = 0$ $\cos 450^{\circ} = 0$ $\cos (-450^{\circ}) = 0$

Why?

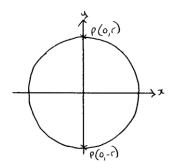




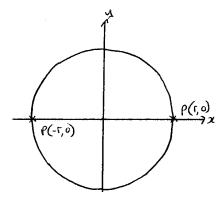
<u>For Tan</u>

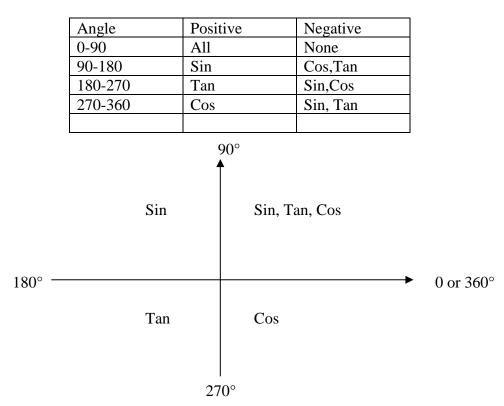
a) Tan is indeterminate when θ is an odd multiple of 90°.

When y = 0 tan $\theta = 0$. This is because when P is at (r, 0) or (-r, 0)



b) Tan $\theta = 0$ When θ is 0° or an even multiple of 90°





Learn the saying "All Sinners Tan Cos they can!!

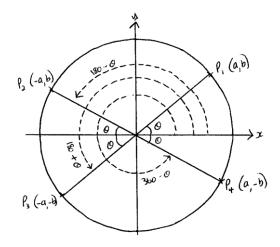
Why?

In 3rd Quadrant: -



$$\sin \theta = \frac{y}{r} \qquad = \frac{-ve}{+ve} = -ve$$
$$\cos \theta = \frac{x}{r} \qquad = \frac{-ve}{+ve} = -ve$$
$$\tan \theta = \frac{y}{x} \qquad = \frac{-ve}{-ve} = +ve$$

Similar Angles

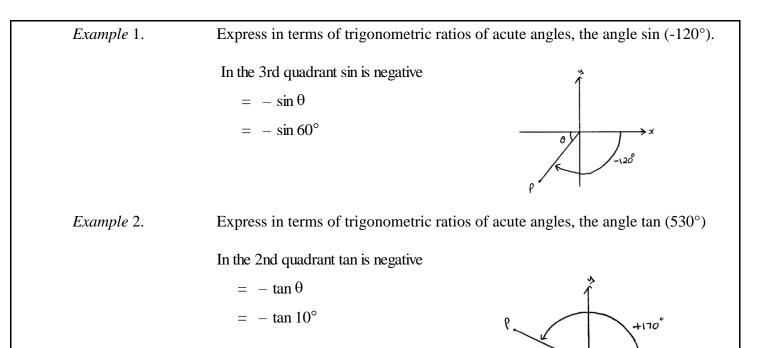


for $\sin \theta = \frac{y}{r}$ so: - $\sin \theta = \frac{b}{r}$ $\sin \theta = \sin 180 - \theta$ $\sin (180 - \theta) = \frac{b}{r}$ $\sin 180 + \theta = \sin 360 - \theta$ $\sin (180 + \theta) = -\frac{b}{r}$ $\sin 180 + \theta = -\sin \theta$ $\sin (360 - \theta) = -\frac{b}{r}$ $\sin 360 - \theta = -\sin \theta$ etc

The results for sine, cosine and tangent are:-

Quadrant 2

 $\sin(180 - \theta) = \sin \theta$ Notice the connection with the quadrants. $\cos(180 - \theta) = -\cos\theta$ $\tan(180 - \theta) = -\tan\theta$ It is telling us where the answers will be positive Quadrant 3 or negative. $\sin\left(180 + \theta\right) = -\sin\theta$ $\cos(180 + \theta) = -\cos\theta$ $\tan(180 + \theta) = \tan\theta$ Quadrant 4 $\sin\left((360 - \theta) = -\sin\theta\right)$ $\cos(360 - \theta) = \cos\theta$ $\tan\left(360-\theta\right) = - \tan\theta$

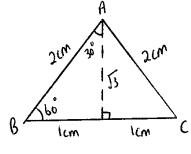


Finding Exact Values of Trigonometric Ratios

How to find 30° and 60° angles

Take an equilateral triangle with sides 2cm (you could do this with any equilateral triangle)

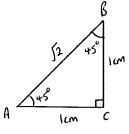
 $AD = \sqrt{2^2 - 1^2}$ $AD = \sqrt{3} cm$ $\therefore \quad \sin 30^\circ = \frac{1}{2} \qquad \qquad \cos 30^\circ = \frac{\sqrt{3}}{2}$ $\sin 60^\circ = \frac{\sqrt{3}}{2}$ $\cos 60^\circ = \frac{1}{2}$ $\tan 60^\circ = \sqrt{3}$



$$\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

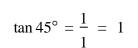
How to find a 45° angle

Take an isosceles right angled triangle with sides 1cm (again you can use any isosceles triangle)



AB =
$$\sqrt{1^2 - 1^2}$$

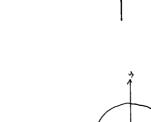
AB = $\sqrt{2} \ cm$
∴ $\sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$



9 135

Example 1. Find the exact value of $\sin 135^{\circ}$

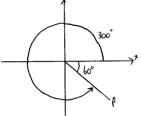
$$\sin 135^\circ = \sin 45^\circ$$
 sin is positive in 2nd quadrant
 $=\frac{\sqrt{2}}{2}$

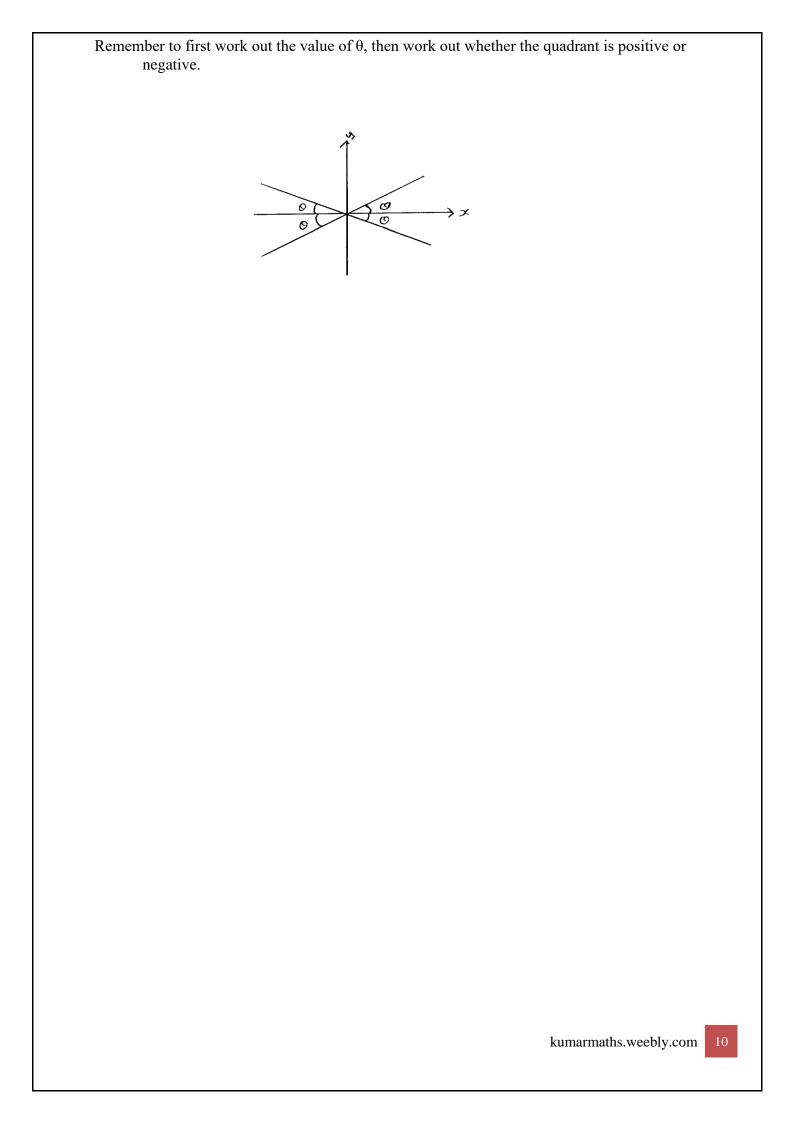


Example 2.

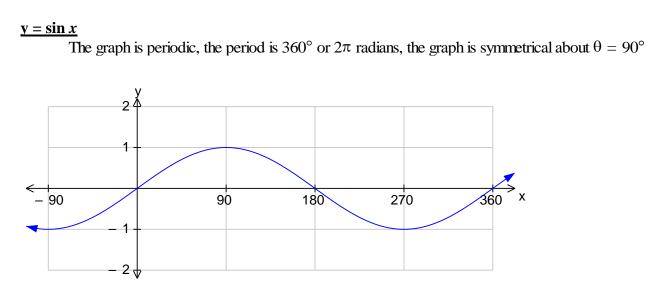
Find the exact value of tan 300°

 $\tan 300^\circ = -\tan \theta$ tan is negative in 4th quadrant $= - \tan 60^{\circ}$



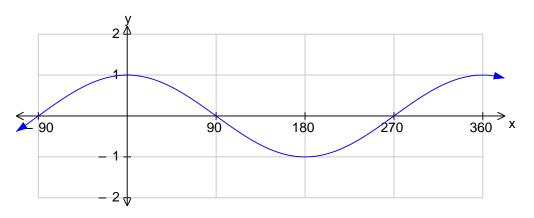


Recognising Trigonometric Graphs



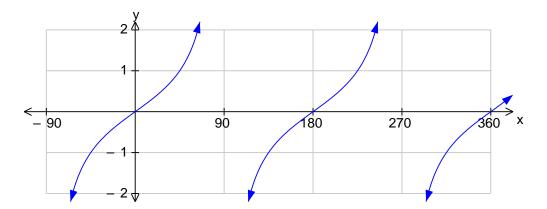
$\underline{\mathbf{y}} = \cos x$

The graph is periodic, the period is 360° or 2π radians, the graph is the same as the cos graph which has been translated 90° to the left, the graph is symmetrical about $\theta = 0^{\circ}$



$y = \tan x$

The graph is periodic, the period is 180° or 2π radians, asymptotes occur at 90° and at odd multiples of 90° there after.



Transformation of Trigonometric Graphs

These follow the same rules as we had for normal graphs.

a) y = sin x + 1 Move the graph up 1 = add 1 to the y coordinate
b) y = cos (x + 90°) Move the graph left 90° = subtract 90° to the x coordinate
c) y = 3 cos x Stretch the graph vertically by 3 = multiply the y coordinate by 3
d) y = sin 2x Stretch the graph horizontally by ½ = multiply the x coordinate by 2
e) y = - tan x

Reflect the graph in the x-axis = change the sign of the y coordinate

 $f) \ y = \cos\left(-x\right)$

Reflect the graph in the y-axis = change the sign of the x coordinate

Solving Trigonometric Equations in Degrees

Using the relationship between Sin, Cos and Tan

1. For all values of θ (except for when tan θ is not defined and where $\cos \theta = 0$)

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Why?

$$\tan \theta = \frac{y}{x}$$

$$\frac{y}{x} = \frac{y}{r} \times \frac{r}{x} \qquad \text{as } \frac{x}{r} = \cos \theta \quad \text{and } \frac{y}{x} = \sin \theta$$

$$\therefore \frac{y}{x} = \sin \theta \times \frac{1}{\cos \theta}$$

$$\therefore \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$$
hence $\tan \theta = \frac{\sin \theta}{\cos \theta}$

2. For all values of θ , $\cos^2 \theta + \sin^2 \theta = 1$

Why?

$$\sin \theta = \frac{y}{r}$$
 so $y = r \sin \theta$
 $\cos \theta = \frac{x}{r}$ so $y = r \cos \theta$

Using Pythagoras

$$x^{2} + y^{2} = r^{2}$$

$$(r \cos \theta)^{2} + (r \sin \theta)^{2} = r^{2}$$

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = r^{2}$$

$$\cos^{2} \theta + \sin \theta^{2} = 1$$

Example 1:
Simplify
$$\sin^2 2\theta + \cos^2 2\theta$$

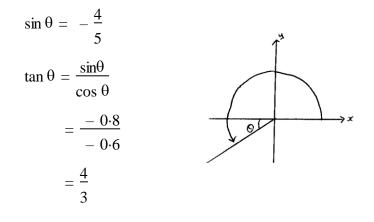
as $\sin^2 \theta + \cos^2 \theta = 1$
 $\sin^2 2\theta + \cos^2 2\theta = 1$

Example 2: Show that
$$\frac{\cos^4 \theta - \sin^4 \theta}{\cos^2 \theta} = 1 - \tan^2 \theta$$

 $\frac{\cos^4 \theta - \sin^4 \theta}{\cos^2 \theta} = \frac{(\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta)}{\cos^2 \theta} \longleftarrow \bigcup_{\substack{\text{difference} \\ \text{of } 2 \text{ squares}}} difference} difference}$

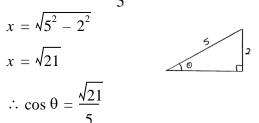
$$\sin^2 \theta = \frac{16}{25}$$
$$\sin \theta = \frac{4}{5}$$

As cos was negative in the question and reflex, it must be in quadrant 3



Example 4:

Given that $\sin \theta = \frac{2}{5}$ and it is obtuse. Find the exact value of $\cos \theta$

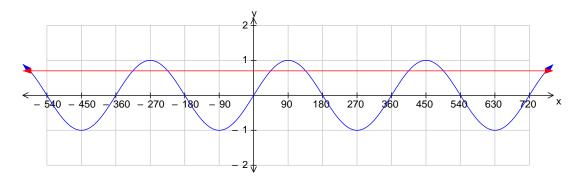


As sin θ is positive and obtuse it must be in the 2nd quadrant.

$$\therefore \cos \theta = -\frac{\sqrt{21}}{5}$$
 because cos is negative in the 2nd quadrant

Solving Simple Trigonometric Equations

If you have an equation like $\sin x = 0.7$ we can show this on a graph



Where the 2 lines intersect are the answers.

Or we can use algebra and our knowledge of trigonometric functions and quadrants.

Angle	positive	negative	How to calculate answer
0 - 90°	All	None	Keep angle
90° - 180°	Sin	Tan, cos	180° - angle
180° - 270°	Tan	Sin, cos	$180^{\circ} + angle$
270° - 360°	Cos	Sin, tan	360° - °angle

Example 1: Find the solution to $\sin \theta = 0.6$ for $0 \le \theta \le 360^{\circ}$

 $\sin\theta=0{\cdot}6$

 $\theta = 36.9^{\circ} (1 dp)$

 $\sin \theta$ is positive in quadrants 1 and 2

 $Q1 = 36.9^{\circ}$

$$Q2 = 180 - 36.9$$

= 143.1°

 \therefore The solutions are 36.9° & 143.1°

Example 2: Find the solution to $\tan \theta = -\sqrt{3}$ for $0 \le \theta \le 360^{\circ}$ $\tan \theta = \sqrt{3}$ ignore the signs to find the initial angle θ $\theta = 60^{\circ}$ \tan is negative in quadrants 2 and 4 Q2 = 180 - 60 $= 120^{\circ}$ Q4 = 360 - 60 $= 300^{\circ}$ The solutions are 120° & 300°

If you need to find more solutions because one of your initial answers lie outside your region, then you can plus or minus the period of the graph.

What's that? $\cos \theta$ $\theta = 1\theta$ so $\frac{360}{1} = 360^{\circ}$

The period is 360° so you can either add or subtract 360° to find the other solutions

$$\sin 3\theta \qquad \qquad \text{so } \frac{360}{3} = 120^{\circ}$$

The 3 means it has been squashed horizontally

The period here is 120° so you can either add or subtract 120° to find other solutions

Solving Harder Trigonometric Equations in Degrees

The key to solving these equations is to try and rearrange the original equation into the form $\sin \theta = C$, this will then give you the value of θ . If you have $\sin (\theta + C) = k$ then you leave the brackets till the end

Example 1: Find the solution to $3\cos(x - 30^{\circ}) = 1$ for $0 \le \theta \le 360^{\circ}$ $3\cos(x - 30) = 1$ $\cos(x - 30) = \frac{1}{3}$ $(x - 30) = 70.53^{\circ}$ $\therefore \theta = 70.53$ \cos is positive in quadrants 1 and 4 $Q1 \quad x - 30 = 70.53$ $x = 100.53^{\circ}$ $Q2 \quad x - 30 = 360 - 70.53$ x - 30 = 289.47 $x = 319.47^{\circ}$ \therefore The solutions are $100.53^{\circ} \& 319.47^{\circ}$

Remember 'inside the bracket leave till the end'

Solving Harder Trigonometric Equations

You need to solve them the same as any other quadratic equation

Example 1:

$$2\cos^{2}\theta - \cos\theta = 1 \quad \text{solve for } 0 \le x \le 360^{\circ}$$

$$2\cos^{2}\theta - \cos\theta = 1$$

$$(2\cos\theta + 1)(\cos\theta - 1) = 0$$

$$\cos\theta = -\frac{1}{2} \quad \text{or } \cos\theta = 1$$

$$\text{using } \cos\theta = \frac{1}{2} \quad \text{using } \cos\theta = 1$$

$$\theta = 60^{\circ} \quad \theta = 0$$

 $\cos \theta$ is negative in quadrants 2 & 3 $\cos \theta$ is positive in quadrants 1 & 4

$$Q2 \quad \theta = 180 - 60 \qquad Q1 \quad \theta = 0^{\circ}$$

$$\theta = 120^{\circ}$$

$$Q3 \quad \theta = 180 + 60 \qquad Q4 \quad \theta = 360 - 0$$

$$\theta = 240^{\circ} \qquad \theta = 360^{\circ}$$

The solutions are $0^\circ,\,120^\circ$, 240° , 360°

Be aware you may need to use $\sin^2 x + \cos^2 x = 1$ to simplify before you can factorise.

Homework Questions 1 – Solving Trig Equations in Degrees

Solve the following equations for $0 \le x \le 360^{\circ}$

a) $\sin x = 0.3$

b) $\cos x = 0.7$

c) $\sin x = 0.54$

d) $\tan x = -0.6$

e) $\sin x = -0.92$

g) $\cos x = -0.37$

h) $\tan x = 0.56$

i) $\sin x = 0.87$

j) $\tan x = -0.03$

Homework Questions 2 – Solving Trig Equations in Degrees

Solve the following equations for -180 < x < 180

a) $\sin x = 0.54$

b) $\cos x = 0.93$

c) $\tan x = -0.11$

d) $\cos x = 0.69$

e) $\sin x = 0.41$

f) $\tan x = -0.43$ g) $\cos x = 0.86$ h) $\tan x = 0.47$ i) $\sin x = -0.3$ j) $\cos x = -0.66$

Homework Questions 3 – Solving Harder Trig Equations in Degrees

Solve the following equations for $0 \le x \le 360^{\circ}$ a) $\sin(x + 20^{\circ}) = 0.43$

b) $\cos(x - 50^\circ) = 0.76$

c) $3\sin x = 2.6$

d) $5 \sin x = 4.42$

e) $2\tan(x + 10^{\circ}) = -1.3$

f) $3\cos(x - 30^\circ) = 2.6$

g) 4 $\cos(x - 18^\circ) + 2 = 5$

h)
$$2 \tan(x + 60^\circ) - 3 = -1.2$$

i)
$$2\cos(x+55^\circ)-0.5 = -0.5$$

j) $5\sin(x + 17^\circ) + 3 = 4.6$

<u>Homework Questions 5 – Solving Trig Equations with more than 2</u> <u>Solutions</u>

Solve the following equations for $0 \le x \le 180^{\circ}$

a) $\sin 3x = 0.96$

b) $\cos 2x = 0.48$

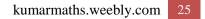
- c) $\tan 2x = -0.55$
- d) $\sin 4x = 0.8$

Solve the following equations for $0 \le x \le \pi$ e) sin 2x = 0.77

f) $\cos 3x = -0.84$

g) $\tan 3x = 0.94$

h) $\cos 2x = -0.86$



Solve the following equations for $-180^{\circ} \le x \le 180^{\circ}$ i) $3\sin 2x = 1.6$ j) $2\cos 2x = 1.6$ k) $4 \sin 3x = -3.66$ l) $2 \tan 2x = 1.18$ Solve the following equations for $-180^{\circ} \le x \le 180^{\circ}$ m) $3\sin 2x - 1 = -2$ n) $4\cos 3x + 2 = 3$

<u>Homework Questions 6– Solving Trig Equations after Simplifying</u> <u>First</u>

Solve the following equations for $0 \le x \le 360^{\circ}$

a) $\sin \theta = 6 \cos \theta$

b) $6 + \cos \theta = 1 + 6 \sin^2 \theta$

c) $2 - \sin \theta = 1 + 2 \cos^2 \theta$

d)
$$13 - 15\cos^2\theta + 7\sin\theta = 0$$

1. Solve, for $0 \le x \le 180^\circ$, the equation

(a)
$$\sin(x+10^\circ) = \frac{\sqrt{3}}{2}$$

(b) $\cos 2x = -0.9$, giving your answers to 1 decimal place.

2. (a) Find all the values of θ , to 1 decimal place, in the interval $0^{\circ} \le \theta < 360^{\circ}$ for which

 $5\sin\left(\theta + 30^\circ\right) = 3.$

(b) Find all the values of θ , to 1 decimal place, in the interval $0^{\circ} \le \theta < 360^{\circ}$ for which

 $\tan^2 \theta = 4.$

3. Solve, for $0 \le x < 360^{\circ}$,

(a)
$$\sin(x - 20^\circ) = \frac{1}{\sqrt{2}}$$
,
(b) $\cos 3x = -\frac{1}{2}$.

4. (a) Given that $\sin \theta = 5 \cos \theta$, find the value of $\tan \theta$.

(b) Hence, or otherwise, find the values of θ in the interval $0 \le \theta < 360^{\circ}$ for which

 $\sin \theta = 5 \cos \theta,$

giving your answers to 1 decimal place.

5. (a) Show that the equation $5 \cos^2 x = 3(1 + \sin x)$ can be written as $5 \sin^2 x + 3 \sin x - 2 = 0.$ (b) Hence solve, for $0 \le x < 360^\circ$, the equation $5 \cos^2 x = 3(1 + \sin x),$ giving your answers to 1 decimal place where appropriate.

6. (*a*) Show that the equation

$$3\sin^2\theta - 2\cos^2\theta = 1$$

can be written as

$$5\sin^2\theta=3.$$

(b) Hence solve, for $0^{\circ} \le \theta < 360^{\circ}$, the equation

$$3\sin^2\theta - 2\cos^2\theta = 1,$$

giving your answer to 1 decimal place.

7. (*a*) Show that the equation

 $4\sin^2 x + 9\cos x - 6 = 0$

can be written as

 $4\cos^2 x - 9\cos x + 2 = 0.$

(*b*) Hence solve, for $0 \le x < 720^\circ$,

 $4\sin^2 x + 9\cos x - 6 = 0,$

giving your answers to 1 decimal place.

8. (i) Solve, for $-180^{\circ} \le \theta < 180^{\circ}$,

 $(1 + \tan \theta)(5 \sin \theta - 2) = 0.$

(ii) Solve, for $0 \le x < 360^\circ$,

 $4 \sin x = 3 \tan x$.

(*a*) Show that the equation 9. $5\sin x = 1 + 2\cos^2 x$ can be written in the form $2\sin^2 x + 5\sin x - 3 = 0.$ (*b*) Solve, for $0 \le x < 360^\circ$, $2\sin^2 x + 5\sin x - 3 = 0.$ (a) Given that $5 \sin \theta = 2 \cos \theta$, find the value of $\tan \theta$. 10. (*b*) Solve, for $0 \le x < 360^\circ$, $5\sin 2x = 2\cos 2x$, giving your answers to 1 decimal place.

11. (*a*) Show that the equation

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

can be written in the form

$$4\sin^2 x + 7\sin x + 3 = 0.$$

(*b*) Hence solve, for $0 \le x < 360^\circ$,

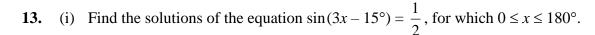
 $3 \sin^2 x + 7 \sin x = \cos^2 x - 4$ giving your answers to 1 decimal place where appropriate.

12. (a) Solve for $0 \le x < 360^\circ$, giving your answers in degrees to 1 decimal place,

$$3\sin\left(x+45^\circ\right)=2$$

(b) Find, for $0 \le x < 2\pi$, all the solutions of $2 \sin^2 x + 2 = 7\cos x$,

giving your answers in radians. You must show clearly how you obtained your answers.



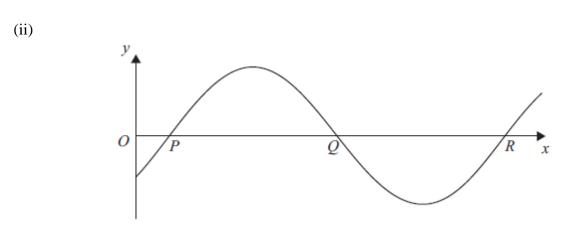


Figure 4 shows part of the curve with equation

 $y = \sin(ax - b)$, where a > 0, 0 < b < 180.

The curve cuts the x-axis at the points P, Q and R as shown.

Given that the coordinates of *P*, *Q* and *R* are (18,0), (108,0) and (198,0) respectively, find the values of *a* and *b*.

(6)

14. (*a*) Show that the equation

$$\tan 2x = 5 \sin 2x$$

can be written in the form

 $(1-5\cos 2x)\sin 2x = 0.$

(*b*) Hence solve, for $0 \le x \le 180^\circ$,

 $\tan 2x = 5 \sin 2x,$

giving your answers to 1 decimal place where appropriate.

You must show clearly how you obtained your answers.

15.

(*a*) Show that the equation

$$\frac{5+\sin\theta}{3\cos\theta} = 2\cos\theta, \qquad \theta \neq (2n+1)90^{\circ}, \quad n \in \phi$$

may be rewritten as

(b) Hence solve, for $-90^{\circ} < \theta < 90^{\circ}$, the equation $\frac{5 + \sin \theta}{3\cos \theta} = 2\cos \theta$

Give your answers to one decimal place, where appropriate.

16.	(a) Given that $7\sin x = 3\cos x$, find the exact value of $\tan x$.
	(b) Hence solve for $0 \le \theta < 360^{\circ}$
	$7\sin(2\theta+30^\circ)=3\cos(2\theta+30^\circ)$
	giving your answers to one decimal place.
17.	(i) Showing each stan in your reasoning prove that
1/.	(i) Showing each step in your reasoning, prove that
	$(\sin x + \cos x)(1 - \sin x \cos x) \equiv \sin^3 x + \cos^3 x$
	(ii) Solve, for $0 \le \theta < 360^{\circ}$,
	$3\sin\theta = \tan\theta$
	giving your answers in degrees to 1 decimal place, as appropriate.