Edexcel
 New GCE A Level Maths workbook Trigonometry 1

Edited by: K V Kumaran

Trigonometry

The sine and cosine rules, and the area of a triangle in the form $\frac{1}{2} a b \sin C$.

Pythagoras Theorem

Pythagoras' Theorem is the relationship between the sides of a right angled triangle. It shows that the squares of the two shortest sides are equal to the square of the longest side.

The longest side is called the hypotenuse
The formula is:

$$
a^{2}+b^{2}=c^{2}
$$

where c is always the hypotenuse

b

Example 1. In right angled triangle, $\mathrm{AB}=23.5 \mathrm{~cm}, \mathrm{BC}=19.3 \mathrm{~cm}$ and $\angle A B C=90^{\circ}$. Find the length of AC.

$$
\begin{array}{rlrl}
a^{2}+b^{2} & =c^{2} \\
23 \cdot 5^{2}+19.3^{2} & =x^{2} \\
552.25+372.49 & =x^{2} \\
924.75 & =x \\
x & =30.41 \mathrm{~cm}(2 d p) & \text { where } a=23.5, b=19.3 \\
&
\end{array}
$$

You need to remember that if you don't know the longest side you add

$$
a^{2}+b^{2}=c^{2}
$$

If you know the longest side you subtract

$$
a^{2}=c^{2}-b^{2}
$$

$\underline{\text { Trigonometry }}$

The ratio of any two sides of a right angled triangle will always remain the same if the angles stay the same. From this we can find three ratios:-

$$
\sin \theta=\frac{o p p}{h y p} \quad \text { os } \theta=\frac{a d y}{h y p} \quad \tan \theta=\frac{o p p}{a d j}
$$

It is important the sides are always named relative to the angle given (this does not include the right angle)

Hypotenuse is always across from the right angle, it never touches it

Opposite faces the given angle but never touches it.

Adjacent is next to the angle and it touches both the right angle and the given angle.

Example 1.
Find the size of angle x

Adjacent
18.9 cm

26.5 cm
$\begin{array}{ll}\tan \theta=\frac{o p p}{\text { adj }} & \begin{array}{l}\text { If } x \text { is the angle } \\ \text { then work out the }\end{array} \\ \text { fraction and use } \\ \text { shift } \tan \end{array}$
$\tan x=1.402$

$$
x=54 \cdot 5 \mathrm{~cm}(1 \mathrm{dp})
$$

Example 2. Find the size of length x

$$
\begin{aligned}
\sin 63^{\circ} \times 23.4 & =x \\
x & =20.85 \mathrm{~cm}
\end{aligned}
$$

If x is at the top of the fractions then you need to multiply

Example 3. Find the size of length x

$$
\left.\begin{array}{rl}
\cos \theta & =\frac{\text { adj }}{h y p} \\
\cos 48^{\circ} & =\frac{37.9}{x} \\
x & =\frac{37.9}{\cos 48} \\
x & =56.64 c m(2 d p)
\end{array} \begin{array}{l}
\text { If } x \text { is at the bottom then } \\
\text { you need to divide the } \\
\text { number by sin/cos or tan }
\end{array}\right\} \text { "bottom means divide" }
$$

Remember:

If x is at the top then times
If x is at the bottom then divide
If x is the angle then work out the fraction and then shift $\sin / \cos / \tan$

Angles of Elevation and Depression

Angles of Elevation

This is an angle always taken from the horizontal upwards. It is often used in trigonometry questions to describe the position of the angle.

The angle of elevation is the angle from the horizontal upwards

Example 1. A ship (S) is out at sea. The angle of elevation from the ship to the top of a cliff is 15.3°. If the vertical height of the cliff is 680 m , how far away from the foot of the cliff is the ship.

$$
\begin{aligned}
\tan \theta & =\frac{o p p}{a d j} \\
\tan 15 \cdot 3^{\circ} & =\frac{680}{x} \\
x & =\frac{680}{\tan 15 \cdot 3} \\
x & =2485 \cdot 66 m
\end{aligned}
$$

Angles of Depression

This is an angle always taken from the horizontal downwards. It is also often used in trigonometry questions to describe the position of the angle.

The angle of elevation is the
angle from the horizontal
downwards
Example 2. A man (M) is standing on the top of a cliff. He is looking out to sea at a boat.

The angle of depression from the man to the boat is 36.8°. If the boat is 1220 m away from the foot of the cliff, how high is the cliff.

$$
\begin{aligned}
\tan \theta & =\frac{o p p}{a d j} \\
\tan 36 \cdot 8^{\circ} & =\frac{x}{1220} \\
x & =\tan 36 \cdot 8 \times 1220 \\
x & =921.68 m
\end{aligned}
$$

Sine Rule

The sine rule is:-

$$
\begin{aligned}
& \quad \frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C} \begin{array}{l}
\text { Choose this formula for an } \\
\text { unknown side }
\end{array} \\
& \text { or } \quad \frac{\operatorname{Sin} A}{a}=\frac{\operatorname{Sin} B}{b}=\frac{\operatorname{Sin} C}{c} \begin{array}{l}
\text { Choose this formula for an } \\
\text { unknown angle }
\end{array} \\
& \hline
\end{aligned}
$$

To use the sine rule you must have a complete ratio - by that I mean you must know one side and its corresponding angle

How to prove the sine rule using trigonometry.

$$
\begin{aligned}
& \operatorname{Sin} B=\frac{h}{a} \\
& h=a \sin B \\
& \therefore a \operatorname{Sin} B=\frac{h}{b} \\
& a=\frac{h \sin A}{\operatorname{Sin} B} \\
& \frac{a}{\operatorname{Sin} A}
\end{aligned}=\frac{b}{\operatorname{Sin} B} .
$$

Finding an Unknown Length

Example $1 \quad$ Find the size of $B C$, given that $A B=14 \mathrm{~cm}, \angle B A C=26^{\circ}, \angle A C B=13^{\circ}$.

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{x}{\sin 26^{\circ}} & =\frac{14}{\sin 13^{\circ}} \\
x & =\frac{14}{\sin 13^{\circ}} \times \sin 26^{\circ} \\
x & =27.3 \mathrm{~cm}(1 d p)
\end{aligned}
$$

Sine Rule

Finding an unknown Angle

Example 1. \quad Find the size of $\angle B A C$, given that $\mathrm{AC}=13 \mathrm{~cm}, \angle A B C=16^{\circ}$, and $\mathrm{BC}=18 \mathrm{~cm}$

$$
\frac{\operatorname{Sin} A}{a}=\frac{\operatorname{Sin} B}{b}
$$

Finding Two Solutions for a Missing Angle

In general if $x=y^{\circ}$ then x is also equal to $180-y^{\circ}$
This is because sometimes you can draw a triangle in 2 different ways.
Example 1.
Given triangle ABC , where $\angle A B C=30^{\circ}, \mathrm{AB}=15 \mathrm{~cm}$ and $\mathrm{BC}=10 \mathrm{~cm}$

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin x}{15} & =\frac{\sin 30^{\circ}}{10} \\
\sin x & =\frac{\sin 30^{\circ}}{10} \times 15 \\
\sin x & =0.75 \\
x & =48.6^{\circ}
\end{aligned}
$$

Also as $x=180-y^{\circ} \quad x=180-48.6$

$$
x=131 \cdot 4^{\circ}
$$

so two solutions are 48.6° and 131.4°

Note: This only occurs if the angle you are finding is larger than the angle given.

The Cosine Rule

This is the last of the triangle formulas. You should only use this if you know all 3 sides or you do not have a complete ratio.

Formulas:

$$
\begin{array}{lrl}
\text { To find a missing angle } & \operatorname{Cos} A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\text { To find a missing side } & a^{2} & =b^{2}+c^{2}-(2 b c \operatorname{Cos} A)
\end{array}
$$

Finding an Unknown Side

Example 1. Find the value of x

$$
\begin{array}{ll}
a^{2}=b^{2}+c^{2}-(a b c \operatorname{Cos} A) & \begin{array}{l}
\text { Remember to leave } \\
a^{2}
\end{array}=9^{2}+17^{2}-(2 \times 9 \times 17 \times \cos 85) \\
a^{2}=343.33 \longleftarrow & \begin{array}{l}
\text { this value in your } \\
\text { calculator to keep } \\
\text { your accuracy }
\end{array} \\
\end{array}
$$

$$
a=18.53 m(2 d p)
$$

The Cosine Rule

Finding an Unknown Angle

Example 1. Find the value of x

Using all Formulas to Solve Problems

The order in which you should attempt triangle problems is:-

1. Pythagoras
2. Trigonometry use these two for right angled triangles
3. Sine Rule
4. Cosine Rule
use these two for non right angled triangles
Remember also your angle facts such as angles in a triangle equal 180°

Example 1. Find the size of length x

$$
\text { using } \begin{aligned}
\sin \theta & =\frac{o p p}{h y p} \\
\sin & =\frac{6}{y} \\
y & =\frac{6}{\sin 52} \\
y & =7.61 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-(2 b c \cos A) \\
& x^{2}=7^{2}+7.61^{2}-(2 \times 7 \times 7.61 \times \cos 110) \\
& x^{2}=143.35 \\
& x=11.97 m(2 d p)
\end{aligned}
$$

Areas of Triangles

There are 2 formulas for finding the area of a triangle.
Formulas:

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { perpendicular height } \quad \text { or } \quad \text { Area }=\frac{1}{2} a b \sin \theta \\
A & =\frac{b \times h}{2}
\end{aligned}
$$

Example 1. Find the area of triangle ABC (diagram not to scale)

$$
\begin{aligned}
& A=\frac{b \times h}{2} \\
& A=\frac{10 \times 5}{2} \\
& A=25 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 2.
Find the area of triangle ABC (diagram not to scale)

$$
\begin{aligned}
\operatorname{Cos} A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\operatorname{Cos} \theta & =\frac{9^{2}+11^{2}-14^{2}}{2 \times 9 \times 11} \\
\operatorname{Cos} \theta & =0.030303 \\
\theta & =88.26^{\circ} \\
\therefore A & =\frac{1}{2} a b \operatorname{Sin} \theta \\
A & =\frac{1}{2} \times 9 \times 11 \times \sin 88.26^{\circ} \\
A & =49.48 m^{2}
\end{aligned}
$$

Homework Questions 1 - Pythagoras

Solve the following problems using Pythagoras. You must show all your working out Give answers to $1 d p$ (all triangles shown are right angled triangles)
a)

14 cm

26 cm
\square
b)

\qquad
c)

16.5 cm
\qquad
5.9 cm

e)

Homework Questions 2 - Trigonometry

Solve the following problems using Trigonometry. You must show all your working out Give answers to ldp (all triangles shown are right angled)
a)

16 cm

25 cm
b)

28 cm

c)

16.5 cm
d)

e)
\square

\square
f)

15 cm
\square

Homework Questions 3 - Angles of Elevation and Depression

(Give all answers correct to 1dp)

1. Simon is 26 m from the base of a tree. The angle of elevation of the top of the tree from Simon is 42°. Calculate the height of the tree.

2. Graham is standing 52 m from a church tower. The tower is 32 m high. Work out the angle of elevation of the top of the church tower from Graham.
3. Fiona is at the edge at the top of the cliff. She sees a boat on the water below. The cliff is 105 m high. The angle of depression of the boat from Fiona is $7{ }^{\circ}$. How far is the boat from the foot of the cliff?

4. A man is standing at the top of the cliff looking out to sea at the boat. A boat has traveled 650 m from the foot of the cliff, and is at an angle of depression of $35{ }^{\circ}$ from the man. How high is the cliff which the man is standing on?

Homework Questions 4 - Finding an Unknown Side Using the Sine Rule

Solve the following problems using the sine rule, give answers to 1dp (The diagrams are not drawn to scal

1. In the Triangle $\mathrm{ABC}, \mathrm{AB}=7 \mathrm{~cm}, \angle B A C=16^{\circ} \angle A C B=26^{\circ}$. Find the length of BC
2. In the Triangle $\mathrm{DEF}, \mathrm{DE}=9 \mathrm{~cm}, \angle E D F=25^{\circ} \angle D F E=72^{\circ}$. Find the length of DF
3.

7.6 m

4.

Find the length of y
5.

In the Triangle $\mathrm{RST}, \mathrm{RT}=30 \mathrm{~cm}, \angle S T R=65 \angle R S T=18^{\circ}$. Find the length of RS
6. In the Triangle $\mathrm{ABC}, \mathrm{BC}=19 \mathrm{~cm}, \angle B A C=63^{\circ} \angle A B C=39^{\circ}$.

Find the length of AC

Homework Questions 5 - Finding an Unknown Angle Using the Sine Rule

Solve the following problems using the sine rule, give answers to 1dp (The diagrams are not drawn to scale)

1. In the Triangle RST, RS $=10 \mathrm{~m}, \mathrm{TS}=8 \mathrm{~m} \angle R T S=55^{\circ}$. Find the size of $\angle T R S$
2.

3.

Find the size of angle y
4. In the Triangle $\mathrm{ABC}, \mathrm{AC}=9 \mathrm{~cm}, \mathrm{BC}=18 \mathrm{~cm}, \angle A B C=26^{\circ}$. Find the size of $\angle B A C$

5. In the Triangle $\mathrm{DEF}, \mathrm{DE}=29 \mathrm{~cm}, \mathrm{DF}=15 \mathrm{~cm} \angle D F E=68^{\circ}$. Find the size of $\angle D E F$

6. In the Triangle $\mathrm{ABC}, \mathrm{AB}=47 \mathrm{~m}, \mathrm{AC}=32 \mathrm{~m} \angle A B C=29^{\circ}$. Find the size of $\angle A C B$

Homework Questions 6 - Finding Two Solutions for A Missing Angle

Solve the following problems using the sine rule, give answers to 1dp (The diagrams are not drawn t ϕ scale)

1. In the Triangle $\mathrm{ABC}, \mathrm{BC}=9 \mathrm{~m}, \mathrm{AC}=13.5 \mathrm{~m}$ and $\angle A B C=55^{\circ}$.

Find the 2 possilbe values for $\angle B A C$
2. Triangle ABC is such that $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\angle A C B=38^{\circ}$.

Find the 2 possilbe values for $\angle B A C$
3. Triangle ABC is such that $\mathrm{AB}=29 \mathrm{~cm}, \mathrm{AC}=14 \mathrm{~cm}$ and $\angle A C B=45^{\circ}$. Find the 2 possilbe values for $\angle A B C$
4. In Triangle ABC is such that $\mathrm{AB}=14 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$ and $\angle A C B=56^{\circ}$.

Find the 2 possilbe values for $\angle A B C$
5. In triangle ABC is such that $\mathrm{AB}=49 \mathrm{~cm}, \mathrm{BC}=26 \mathrm{~cm}$ and $\angle B A C=30^{\circ}$.

Find the 2 possilbe values for $\angle A C B$

Homework Questions 7 - Finding an Unknown Side Using the Cosine

Rule

Solve the following, give answers to 1dp (Diagrams are not drawn to scale)

1. In triangle $\mathrm{ABC}, \mathrm{AB}=47 \mathrm{~cm}, \mathrm{BC}=45 \mathrm{~cm}, \angle A B C=62^{\circ}$.

What is the size of the length AC
2. In triangle $\mathrm{DEF}, \mathrm{DE}=18 \mathrm{~cm}, \mathrm{DF}=20 \mathrm{~cm}, \angle E D F=46^{\circ}$.

What is the size of the length EF
3.

8.2 m

Find the size of x

4.

Find the size of y

5. In triangle RST, $\mathrm{ST}=14 \mathrm{~cm}, \mathrm{RT}=29 \mathrm{~cm}, \angle R T S=35^{\circ}$.

What is the size of the length RS
6. In triangle $\mathrm{ABC}, \mathrm{AC}=48 \mathrm{~cm}, \mathrm{BC}=54 \mathrm{~cm}, \angle B C A=68^{\circ}$.

What is the size of the length $A B$

Homework Questions 8 - Finding an Unknown Angle Using the Cosine Rule

Solve the following, give answers to 1 dp . (the diagrams are not drawn to scale)
1.

2.

3. In Triangle $\mathrm{ABC}, \mathrm{AB}=19 \mathrm{~cm}, \mathrm{AC}=15 \mathrm{~cm}$ and $\mathrm{BC}=29 \mathrm{~cm}$. What is the size of $\angle A B C$
4. In Triangle $\mathrm{DEF}, \mathrm{DE}=21 \mathrm{~m}, \mathrm{EF}=26 \mathrm{~m}$ and $\mathrm{DF}=38 \mathrm{~m}$.

What is the size of $\angle D F E$
\square
5. In Triangle RST, RS $=65 \mathrm{~cm}, \mathrm{ST}=72 \mathrm{~cm}$ and $\mathrm{RT}=82 \mathrm{~cm}$.

What is the size of $\angle R S T$
\square
6. In Triangle $\mathrm{ABC}, \mathrm{AB}=29 \mathrm{~cm}, \mathrm{AC}=26 \mathrm{~cm}$ and $\mathrm{BC}=35 \mathrm{~cm}$.

What is the size of $\angle A C B$
\square

Homework Questions 9 - Mixed Problems

Solve the following, give answers to 1dp (Diagrams are not drawn to scale)

1. A hiker walks from A to B on a bearing of 060°. After 7 km he reaches B and then walks a further 12 km on a bearing of1 40 to point C
a) What is the distance from A to C
b) What is the bearing of C from A
2. In triangle $\mathrm{ABC}, \mathrm{AB}=10 \mathrm{~km}, \mathrm{BC}=14 \mathrm{~km}, \angle B C A=35^{\circ}$
a) What is the size of $\angle A B C$
b) What is the size of length AC
\square
3. In the triangle $\mathrm{ABC}, \mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=9 \mathrm{~m}, \angle A C B=62^{\circ}$. If D is the midpoint of AC , what is the length of BD
4.

Find the size of y

Homework Questions 10 - Area of a Triangle

Find the area of the following triangles, give answers to 1 dp . (The diagrams are not drawn to scale) 1.

2.

3.
16.5 m

23.61 m
4.

5. In triangle $A B C, A B=54 \mathrm{~m}, \mathrm{AC}=43 \mathrm{~m}$ and $\mathrm{BC}=62 \mathrm{~m}$.

What is the area of the triangle ABC

6.

In triangle $\mathrm{ABC}, \mathrm{AB}=16 \mathrm{~cm}, \mathrm{BC}=16 \mathrm{~cm}$ and $\angle B C A=48^{\circ}$
What is the area of the triangle $A B C$

