Edexcel
 New GCE A Level Maths workbook Surds and Indices

Rules of indices

Key points

- $a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Examples

Example 1 Evaluate 10^{0}

$$
\begin{array}{l|l}
10^{0}=1 & \begin{array}{l}
\text { Any value raised to the power of zero is } \\
\text { equal to } 1
\end{array}
\end{array}
$$

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}}$	$=\sqrt{9}$
	$=3$

Example 3 Evaluate $27^{\frac{2}{3}}$

$$
\begin{aligned}
27^{\frac{2}{3}} & =(\sqrt[3]{27})^{2} \\
& =3^{2} \\
& =9
\end{aligned}
$$

Example 4 Evaluate 4^{-2}

$$
\begin{array}{rl|l}
4^{-2} & =\frac{1}{4^{2}} & \mathbf{1} \text { Use the rule } a^{-m}=\frac{1}{a^{m}} \\
& =\frac{1}{16} & \mathbf{2} \text { Use } 4^{2}=16
\end{array}
$$

Example 5 Simplify $\frac{6 x^{5}}{2 x^{2}}$

$$
\frac{6 x^{5}}{2 x^{2}}=3 x^{3}
$$

$6 \div 2=3$ and use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$ to give $\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$

Example 6 Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$$
\begin{aligned}
\frac{x^{3} \times x^{5}}{x^{4}} & =\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}} \\
& =x^{8-4}=x^{4}
\end{aligned}
$$

1 Use the rule $a^{m} \times a^{n}=a^{m+n}$
2 Use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$

Example 7 Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example $8 \quad$ Write $\frac{4}{\sqrt{x}}$ as a single power of x

$$
\begin{array}{rl|l}
\frac{4}{\sqrt{x}} & =\frac{4}{x^{\frac{1}{2}}} & \mathbf{1} \text { Use the rule } a^{\frac{1}{n}}=\sqrt[n]{a} \\
& =4 x^{-\frac{1}{2}} & \mathbf{2} \text { Use the rule } \frac{1}{a^{m}}=a^{-m}
\end{array}
$$

Practice

1 Evaluate.
a $\quad 14^{0}$
b $\quad 3^{0}$
c $\quad 5^{0}$
d x^{0}

2 Evaluate.
a $49^{\frac{1}{2}}$
b $\quad 64^{\frac{1}{3}}$
c $125^{\frac{1}{3}}$
d $16^{\frac{1}{4}}$

3 Evaluate.
a $25^{\frac{3}{2}}$
b $8^{\frac{5}{3}}$
c $\quad 49^{\frac{3}{2}}$
d $16^{\frac{3}{4}}$

4 Evaluate.
a 5^{-2}
b $\quad 4^{-3}$
c $\quad 2^{-5}$
d 6^{-2}

5 Simplify.
a $\frac{3 x^{2} \times x^{3}}{2 x^{2}}$
b $\frac{10 x^{5}}{2 x^{2} \times x}$
c $\frac{3 x \times 2 x^{3}}{2 x^{3}}$
d $\frac{7 x^{3} y^{2}}{14 x^{5} y}$
e $\frac{y^{2}}{y^{\frac{1}{2}} \times y}$
$\mathbf{f} \frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$
g $\frac{\left(2 x^{2}\right)^{3}}{4 x^{0}}$
h $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

Watch out!
Remember that
any value raised to
the power of zero
is 1. This is the
rule $a^{0}=1$.

6 Evaluate.
a $4^{-\frac{1}{2}}$
b $27^{-\frac{2}{3}}$
d $16^{\frac{1}{4}} \times 2^{-3}$
e $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$
c $\quad 9^{-\frac{1}{2}} \times 2^{3}$
f $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$
$7 \quad$ Write the following as a single power of x.
a $\frac{1}{x}$
b $\frac{1}{x^{7}}$
c $\sqrt[4]{x}$
d $\sqrt[5]{x^{2}}$
e $\quad \frac{1}{\sqrt[3]{x}}$
f $\frac{1}{\sqrt[3]{x^{2}}}$

8 Write the following without negative or fractional powers.
a x^{-3}
b $\quad x^{0}$
c $x^{\frac{1}{5}}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
f $x^{-\frac{3}{4}}$

9 Write the following in the form $a x^{n}$.
a $5 \sqrt{x}$
b $\frac{2}{x^{3}}$
c $\quad \frac{1}{3 x^{4}}$
d $\frac{2}{\sqrt{x}}$
e $\quad \frac{4}{\sqrt[3]{x}}$
f 3

Extend

10 Write as sums of powers of x.
a $\frac{x^{5}+1}{x^{2}}$
b $\quad x^{2}\left(x+\frac{1}{x}\right)$
c $\quad x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$

Answers

1 a 1
b $\quad 1$
c $\quad 1$
d 1
$\begin{array}{lll}2 & \mathbf{a} & 7\end{array}$
b 4
c 5
d 2
3 a 125
b $\quad 32$
c $\quad 343$
d 8
$4 \quad \mathbf{a} \quad \frac{1}{25}$
b $\quad \frac{1}{64}$
c $\quad \frac{1}{32}$
d $\frac{1}{36}$
$5 \quad \mathbf{a} \quad \frac{3 x^{3}}{2}$
b $5 x^{2}$
c $3 x$
d $\frac{y}{2 x^{2}}$
e $y^{\frac{1}{2}}$
f c^{-3}
g $2 x^{6}$
h x
$6 \quad$ a $\quad \frac{1}{2}$
b $\quad \frac{1}{9}$
c $\frac{8}{3}$
d $\frac{1}{4}$
e $\frac{4}{3}$
f $\frac{16}{9}$
$7 \quad \mathbf{a} \quad x^{-1}$
d $x^{\frac{2}{5}}$
b $\quad x^{-7}$
c $\quad x^{\frac{1}{4}}$
e $x^{-\frac{1}{3}}$
f $x^{-\frac{2}{3}}$

8 a $\frac{1}{x^{3}}$
b $\quad 1$
c $\quad \sqrt[5]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt{x}}$
f $\frac{1}{\sqrt[4]{x^{3}}}$

9 a $5 x^{\frac{1}{2}}$
b $\quad 2 x^{-3}$
c $\quad \frac{1}{3} x^{-4}$
d $2 x^{-\frac{1}{2}}$
e $4 x^{-\frac{1}{3}}$
f $3 x^{0}$

10 a $x^{3}+x^{-2}$
b $\quad x^{3}+x$
c $\quad x^{-2}+x^{-7}$

Surds and rationalising the denominator

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$$
\begin{array}{l|l}
\sqrt{50}=\sqrt{25 \times 2} & \begin{array}{l}
\text { 1 } \begin{array}{l}
\text { Choose two numbers that are } \\
\text { factors of 50. One of the factors } \\
\text { must be a square number }
\end{array} \\
=\sqrt{25} \times \sqrt{2} \\
=5 \times \sqrt{2}
\end{array} \\
\mathbf{2} \quad \begin{array}{l}
\text { Use the rule } \sqrt{a b}=\sqrt{a} \times \sqrt{b}
\end{array} \\
\text { 3 } \begin{array}{l}
\text { Use } \sqrt{25}=5
\end{array}
\end{array}
$$

$$
=5 \sqrt{2}
$$

Example 2 Simplify $\sqrt{147}-2 \sqrt{12}$

$$
\begin{aligned}
& \sqrt{147}-2 \sqrt{12} \\
& =\sqrt{49 \times 3}-2 \sqrt{4 \times 3} \\
& =\sqrt{49} \times \sqrt{3}-2 \sqrt{4} \times \sqrt{3} \\
& =7 \times \sqrt{3}-2 \times 2 \times \sqrt{3} \\
& =7 \sqrt{3}-4 \sqrt{3}=3 \sqrt{3}
\end{aligned}
$$

1 Simplify $\sqrt{147}$ and $2 \sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
2 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
3 Use $\sqrt{49}=7$ and $\sqrt{4}=2$
4 Collect like terms

Example 3 Simplify $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$

$(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$	
$=\sqrt{49}-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}-\sqrt{4}$	$\mathbf{1}$Expand the brackets. A common mistake here is to write $(\sqrt{7})^{2}=49$
$=7-2$	
$=5$	2Collect like terms: $-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}$ $=-\sqrt{7} \sqrt{2}+\sqrt{7} \sqrt{2}=0$

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{1 \times \sqrt{3}}{\sqrt{9}} \\
& =\frac{\sqrt{3}}{3}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{3}$

2 Use $\sqrt{9}=3$

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$$
\begin{aligned}
\frac{\sqrt{2}}{\sqrt{12}} & =\frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}} \\
& =\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12} \\
& =\frac{2 \sqrt{2} \sqrt{3}}{12} \\
& =\frac{\sqrt{2} \sqrt{3}}{6}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{12}$

2 Simplify $\sqrt{12}$ in the numerator.
Choose two numbers that are factors of 12 . One of the factors must be a square number

3 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
4 Use $\sqrt{4}=2$
5 Simplify the fraction:
$\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example $6 \quad$ Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$$
\begin{aligned}
& \frac{3}{2+\sqrt{5}}=\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}} \\
& =\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})} \\
& =\frac{6-3 \sqrt{5}}{4+2 \sqrt{5}-2 \sqrt{5}-5} \\
& =\frac{6-3 \sqrt{5}}{-1} \\
& =3 \sqrt{5}-6
\end{aligned}
$$

1 Multiply the numerator and denominator by $2-\sqrt{5}$

2 Expand the brackets

3 Simplify the fraction

4 Divide the numerator by - 1
Remember to change the sign of all terms when dividing by -1

Practice

1 Simplify.
a $\sqrt{45}$
b $\sqrt{125}$
c $\sqrt{48}$
d $\sqrt{175}$
e $\sqrt{300}$
f $\sqrt{28}$
g $\sqrt{72}$
h $\sqrt{162}$

Hint

One of the two numbers you choose at the start must be a square number.

Watch out!

Check you have chosen the highest square number at the

3 Expand and simplify.
a $\quad(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
b $\quad(3+\sqrt{3})(5-\sqrt{12})$
c $\quad(4-\sqrt{5})(\sqrt{45}+2)$
d $\quad(5+\sqrt{2})(6-\sqrt{8})$

4 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{5}}$
b $\frac{1}{\sqrt{11}}$
c $\frac{2}{\sqrt{7}}$
d $\frac{2}{\sqrt{8}}$
e $\frac{2}{\sqrt{2}}$
f $\frac{5}{\sqrt{5}}$
g $\frac{\sqrt{8}}{\sqrt{24}}$
h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.
a $\frac{1}{3-\sqrt{5}}$
b $\frac{2}{4+\sqrt{3}}$
c $\frac{6}{5-\sqrt{2}}$

Extend

6 Expand and simplify $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})$

7 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{9}-\sqrt{8}}$
b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Answers

1 a $3 \sqrt{5}$
c $\quad 4 \sqrt{3}$
b $\quad 5 \sqrt{5}$
e $10 \sqrt{3}$
$\begin{array}{ll}\text { e } & 10 \sqrt{3} \\ \text { g } & 6 \sqrt{2}\end{array}$
d $5 \sqrt{7}$
f $\quad 2 \sqrt{7}$
h $9 \sqrt{2}$
2 a $15 \sqrt{2}$
c $3 \sqrt{2}$
e $6 \sqrt{7}$
b $\sqrt{5}$
d $\sqrt{3}$
f $5 \sqrt{3}$
3 a -1
c $\quad 10 \sqrt{5}-7$
b $\quad 9-\sqrt{3}$
d $26-4 \sqrt{2}$
$4 \quad$ a $\quad \frac{\sqrt{5}}{5}$
c $\frac{2 \sqrt{7}}{7}$
b $\frac{\sqrt{11}}{11}$
e $\sqrt{2}$
d $\frac{\sqrt{2}}{2}$
g $\frac{\sqrt{3}}{3}$
f $\sqrt{5}$
h $\frac{1}{3}$
$5 \quad$ a $\quad \frac{3+\sqrt{5}}{4}$
b $\frac{2(4-\sqrt{3})}{13}$
c $\quad \frac{6(5+\sqrt{2})}{23}$
$6 x-y$
$7 \quad$ a $\quad 3+2 \sqrt{2}$
b $\frac{\sqrt{x}+\sqrt{y}}{x-y}$

1.1	I can use the rules of indices for rational n	\because	\because	\because
1.2	I can write a number exactly using surds	\because	\because	\because
1.3	I can rationalize the denominator when it is a surd	\because	\because	\because

Q1.
(a) Simplify
$\sqrt{ } 32+\sqrt{ } 18$
giving your answer in the form $a \sqrt{ } 2$, where a is an integer.
(b) Simplify

$$
\frac{\sqrt{32}+\sqrt{ } 18}{3+\sqrt{2}}
$$

giving your answer in the form $b \sqrt{ } 2+c$, where b and c are integers.

Q2.
(a) Find the value of $16^{\frac{1}{4}}$
(b) Simplify $x\left(2 x^{-\frac{1}{4}}\right)^{4}$

Q3.
Simplify

$$
\frac{5-2 \sqrt{3}}{\sqrt{3}-1}
$$

giving your answer in the form $p+q \sqrt{ } 3$, where p and q are rational numbers.

Q4.
(a) Evaluate $(32)^{\frac{3}{5}}$, giving your answer as an integer.
(b) Simplify fully $\left(\frac{25 x^{4}}{4}\right)^{-\frac{1}{2}}$

Q5.
Show that $\frac{2}{\sqrt{(12)-\sqrt{(8)}}}$ can be written in the form $\sqrt{ } a+\sqrt{ } b$, where a and b are integers.

Q6.
Find the value of
(a) $25^{\frac{1}{2}}$
(b) $25^{-\frac{3}{2}}$

Q7.
(a) Write down the value of $125^{\frac{1}{3}}$.
(b) Find the value of $125^{-\frac{2}{3}}$.

Q8.
Expand and simplify $(\sqrt{ } 7+2)(\sqrt{ } 7-2)$.

Q9.
Write
$\sqrt{ }(75)-\sqrt{ }(27)$
in the form $k \sqrt{ }$, where k and x are integers.

Q10.
(a) Expand and simplify $(7+\sqrt{ } 5)(3-\sqrt{ } 5)$
$7+\sqrt{5}$
(b) Express $3+\sqrt{5}$ in the form $a+b \sqrt{ } 5$, where a and b are integers.

Q11.
Simplify
(a) $(3 \sqrt{ } 7)^{2}$
(b) $(8+\sqrt{ } 5)(2-\sqrt{ } 5)$

Q12.
Given that $32 \sqrt{ } 2=2^{a}$, find the value of a.

Q13.
Express $8^{2 x+3}$ in the form 2^{y}, stating y in terms of x.

Q14.
(i) Express

$$
(5-\sqrt{ } 8)(1+\sqrt{ } 2)
$$

in the form $a+b \sqrt{ } 2$, where a and b are integers.
(ii) Express

$$
\sqrt{ } 80+\frac{30}{\sqrt{5}}
$$

in the form $c \sqrt{ } 5$, where c is an integer.

Q15.
Simplify

$$
\frac{7+\sqrt{5}}{\sqrt{5}-1}
$$

giving your answer in the form $a+b \sqrt{ } 5$, where a and b are integers.

Q16.
(a) Find the value of $8^{\frac{5}{3}}$
(b) Simplify fully $\frac{\left(2 x^{\frac{1}{2}}\right)^{3}}{4 x^{2}}$

Q17.
Express $\frac{15}{\sqrt{3}}-\sqrt{27}$ in the form $k \sqrt{ } 3$, where k is an integer.

Q18.
Solve
(a) $2^{y}=8$
(b) $2^{x} \times 4^{x+1}=8$

Q19.
(a) Evaluate $81^{\frac{3}{2}}$
(b) Simplify fully $x^{2}\left(4 x^{-\frac{1}{2}}\right)^{2}$

Q20.

Solve the equation

$$
10+x \sqrt{ } 8=\frac{6 x}{\sqrt{2}}
$$

Give your answer in the form $a \sqrt{ } b$ where a and b are integers.

Q21.

Simplify
(a) $(2 \sqrt{5})^{2}$
(b) $\overline{2 \sqrt{ } 5-3 \sqrt{2}}$ giving your answer in the form $a+\sqrt{ } b$, where a and b are integers.

Q22.
(a) Write down the value of $16^{\frac{1}{4}}$.
(b) Simplify $\left(16 x^{12}\right)^{\frac{3}{4}}$.

Q23.
Simplify

$$
\frac{5-\sqrt{3}}{2+\sqrt{3}}
$$

giving your answer in the form $a+b \sqrt{ } 3$, where a and b are integers.

Q24.
Simplify $(3+\sqrt{ } 5)(3-\sqrt{ } 5)$.

Q25.
(a) Find the value of $8^{\frac{4}{3}}$.
(b) Simplify $\frac{15 x^{\frac{4}{3}}}{3 x}$.

Q26.

Express $9^{3 x+1}$ in the form 3^{y}, giving y in the form $a x+b$, where a and b are constants.

Q27.
(a) Simplify

$$
\sqrt{50}-\sqrt{18}
$$

giving your answer in the form $a \sqrt{2}$, where a is an integer.
(b) Hence, or otherwise, simplify

$$
\frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}
$$

giving your answer in the form $b \sqrt{c}$, where b and c are integers and $b \neq 1$

