Edexcel New GCE A Level Maths workbook Surds and Indices

Edited by: K V Kumaran

kumarmaths.weebly.com

Rules of indices

Key points

- $a^m \times a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}$
- $(a^m)^n = a^{mn}$ $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

- $a^{-m} = \frac{1}{a^m}$
- The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$.

Examples

Example 1	Evaluate	100
-----------	----------	-----

$10^0 = 1$	Any value raised to the power of zero is equal to 1
------------	---

Example 2 Evaluate $9^{\frac{1}{2}}$

	$9^{\frac{1}{2}} = \sqrt{9}$ $= 3$	Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
--	------------------------------------	--

Example 3

Evaluate $27^{\frac{2}{3}}$

$27^{\frac{2}{3}} = (\sqrt[3]{27})^2$	1 Use the rule $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$
$= 3^{2}$ = 9	2 Use $\sqrt[3]{27} = 3$

Example 4	Evaluate 4 ⁻²	
	$4^{-2} = \frac{1}{4^2}$	1 Use the rule $a^{-m} = \frac{1}{a^m}$
	$=\frac{1}{16}$	2 Use $4^2 = 16$
Example 5	Simplify $\frac{6x^5}{2x^2}$	
	$\frac{6x^5}{2x^2} = 3x^3$	$6 \div 2 = 3$ and use the rule $\frac{a^m}{a^n} = a^{m-n}$ to
		give $\frac{x^5}{x^2} = x^{5-2} = x^3$
Example 6	Simplify $\frac{x^3 \times x^5}{x^4}$	11
	$\frac{x^3 \times x^5}{x^4} = \frac{x^{3+5}}{x^4} = \frac{x^8}{x^4}$	1 Use the rule $a^m \times a^n = a^{m+n}$
	$= x^{8-4} = x^4$	2 Use the rule $\frac{a^m}{a^n} = a^{m-n}$
Example 7	Write $\frac{1}{3x}$ as a single power of x	
	$\frac{1}{3x} = \frac{1}{3}x^{-1}$	Use the rule $\frac{1}{a^m} = a^{-m}$, note that the
		fraction $\frac{1}{3}$ remains unchanged
Example 8	Write $\frac{4}{\sqrt{x}}$ as a single power of x	
	$\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$	1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
	$=4x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^m} = a^{-m}$

Practice

1	Evaluate. a 14 ⁰	b	3 ⁰	c	5^0	d	<i>x</i> ⁰
2	Evaluate. a $49^{\frac{1}{2}}$	b	$64^{\frac{1}{3}}$	с	$125^{\frac{1}{3}}$	d	$16^{\frac{1}{4}}$
3	Evaluate. a $25^{\frac{3}{2}}$	b	$8^{\frac{5}{3}}$	с	$49^{\frac{3}{2}}$	d	$16^{\frac{3}{4}}$
4	Evaluate. a 5^{-2}	b	4-3	с	2 ⁻⁵	d	6 ⁻²

5 Simplify.

a	$\frac{3x^2 \times x^3}{2x^2}$	b	$\frac{10x^5}{2x^2 \times x}$
c	$\frac{3x \times 2x^3}{2x^3}$	d	$\frac{7x^3y^2}{14x^5y}$
e	$\frac{y^2}{y^{\frac{1}{2}} \times y}$	f	$\frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$
g	$\frac{\left(2x^2\right)^3}{4x^0}$	h	$\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

Watch out!
Remember that
any value raised to
the power of zero
is 1. This is the
rule <i>a</i> ⁰ = 1.

a
$$4^{-\frac{1}{2}}$$
 b $27^{-\frac{2}{3}}$ **c** $9^{-\frac{1}{2}} \times 2^{3}$
d $16^{\frac{1}{4}} \times 2^{-3}$ **e** $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$ **f** $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$

Write the following as a single power of *x*. 7

a
$$\frac{1}{x}$$
 b $\frac{1}{x^7}$ **c**
d $\sqrt[5]{x^2}$ **e** $\frac{1}{\sqrt[3]{x}}$ **f**

c $\sqrt[4]{x}$ $\mathbf{f} \qquad \frac{1}{\sqrt[3]{x^2}}$

- Write the following without negative or fractional powers.
 - $x^{\frac{1}{5}}$ x^{-3} x^0 c b a **d** $x^{\frac{2}{5}}$ **e** $x^{-\frac{1}{2}}$ **f** $x^{-\frac{3}{4}}$

Write the following in the form ax^n . 9

b $\frac{2}{x^3}$ c $\frac{1}{3x^4}$ a $5\sqrt{x}$ $\mathbf{e} \qquad \frac{4}{\sqrt[3]{x}}$ **d** $\frac{2}{\sqrt{x}}$ 3 f

Extend

8

10 Write as sums of powers of *x*.

a
$$\frac{x^5 + 1}{x^2}$$
 b $x^2 \left(x + \frac{1}{x} \right)$ **c** $x^{-4} \left(x^2 + \frac{1}{x^3} \right)$

Answers

1	a	1	b	1	c	1	d	1
2	a	7	b	4	c	5	d	2
3	a	125	b	32	c	343	d	8
4	a	$\frac{1}{25}$	b	$\frac{1}{64}$	С	$\frac{1}{32}$	d	$\frac{1}{36}$
5	a	$\frac{3x^3}{2}$	b	$5x^2$				
	c	3 <i>x</i>	d	$\frac{y}{2x^2}$				
	e g	$\frac{y^{\frac{1}{2}}}{2x^6}$	f h	c ⁻³ x				
6	a	$\frac{1}{2}$	b	$\frac{1}{9}$	c	$\frac{8}{3}$		
	d	$\frac{1}{4}$	e	$\frac{4}{3}$	f	$\frac{16}{9}$		
7	a	x^{-1}	b	<i>x</i> ⁻⁷	c	$x^{\frac{1}{4}}$		
	d	$x^{\frac{2}{5}}$	e	$x^{-\frac{1}{3}}$	f	$x^{-\frac{2}{3}}$		
8	a	$\frac{1}{x^3}$	b	1	c	$\sqrt[5]{x}$		
	d	$\sqrt[5]{x^2}$	e	$\frac{1}{\sqrt{x}}$	f	$\frac{1}{\sqrt[4]{x^3}}$		
9	a	$5x^{\frac{1}{2}}$	b	2 <i>x</i> ⁻³	C	$\frac{1}{3}x^{-4}$		
	d	$2x^{-\frac{1}{2}}$	e	$4x^{-\frac{1}{3}}$	f	$3x^0$		
10	a	$x^3 + x^{-2}$	b	$x^3 + x$	с	$x^{-2} + x^{-7}$		

Surds and rationalising the denominator

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50} = \sqrt{25 \times 2}$	1 Choose two numbers that are factors of 50. One of the factors must be a square number
$= \sqrt{25} \times \sqrt{2}$ $= 5 \times \sqrt{2}$ $= 5\sqrt{2}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ 3 Use $\sqrt{25} = 5$

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=7 \times \sqrt{3} - 2 \times 2 \times \sqrt{3}$	3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$=7\sqrt{3}-4\sqrt{3}=3\sqrt{3}$	4 Collect like terms

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

$ \left(\sqrt{7} + \sqrt{2}\right)\left(\sqrt{7} - \sqrt{2}\right) $ $= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4} $	1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$
= 7 - 2	2 Collect like terms:
= 5	$-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Example 4 Rationalise
$$\frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{1 \times \sqrt{3}}{\sqrt{9}}$$

$$= \frac{\sqrt{3}}{3}$$
1 Multiply the numerator and denominator by $\sqrt{3}$
2 Use $\sqrt{9} = 3$

Example 5Rationalise and simplify
$$\frac{\sqrt{2}}{\sqrt{12}}$$
 $\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$ 1 $\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$ 1 $\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$ 2 $\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$ 2 $\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$ 2 $\frac{\sqrt{2} \sqrt{3}}{12}$ 3 $\frac{\sqrt{2} \sqrt{3}}{12}$ 3 $\frac{\sqrt{2} \sqrt{3}}{6}$ 5 $\frac{\sqrt{2} \sqrt{3}}{12}$ 5 $\frac{\sqrt{2} \sqrt{3}}{6}$ $\frac{1}{6}$

Example 6	Rationalise and simplify $\frac{3}{2+\sqrt{5}}$		
	$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1	Multiply the numerator and denominator by $2 - \sqrt{5}$
	$=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$	2	Expand the brackets
	$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3	Simplify the fraction
	$=\frac{6-3\sqrt{5}}{-1}$ $=3\sqrt{5}-6$	4	Divide the numerator by -1 Remember to change the sign of all terms when dividing by -1

Practice

1	Sim	plify.			Hint
	a	$\sqrt{45}$	b	$\sqrt{125}$	One of the two
	c	$\sqrt{48}$	d	$\sqrt{175}$	numbers you
	e	$\sqrt{300}$	f	$\sqrt{28}$	choose at the start
	g	$\sqrt{72}$	h	$\sqrt{162}$	number.

2	Sin	nplify.			Wat
	a	$\sqrt{72} + \sqrt{162}$	b	$\sqrt{45} - 2\sqrt{5}$	Che
	c	$\sqrt{50} - \sqrt{8}$	d	$\sqrt{75} - \sqrt{48}$	chos
	e	$2\sqrt{28} + \sqrt{28}$	f	$2\sqrt{12} - \sqrt{12} + \sqrt{27}$	high num
•	-				

Expand and simplify. 3

a $(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$ b $(3 + \sqrt{3})(5 - \sqrt{12})$ c $(4 - \sqrt{5})(\sqrt{45} + 2)$ d $(5 + \sqrt{2})(6 - \sqrt{8})$

ch out!

Γ

Γ

ck you have sen the lest square nber at the

4 Rationalise and simplify, if possible.

a	$\frac{1}{\sqrt{5}}$	b	$\frac{1}{\sqrt{11}}$
c	$\frac{2}{\sqrt{7}}$	d	$\frac{2}{\sqrt{8}}$
e	$\frac{2}{\sqrt{2}}$	f	$\frac{5}{\sqrt{5}}$
g	$\frac{\sqrt{8}}{\sqrt{24}}$	h	$\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

Extend

6 Expand and simplify
$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$$

7 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9} - \sqrt{8}}$$
 b $\frac{1}{\sqrt{x} - \sqrt{y}}$

Answers

1	a	3√5	b	5√5		
	c	4√3	d	5√7		
	e	10√3	f	2√7		
	g	6√2	h	$9\sqrt{2}$		
_			_	F		
2	a	15√2	b	√5		
	с	3√2	d	√3		
	e	6√7	f	5√3		
3	я	-1	h	9-13		
U	u 0		d	26 A D		
	C	10\75-7	a	$20-4\sqrt{2}$		
4	9	$\sqrt{5}$	h	$\sqrt{11}$		
-	a	5	U	11		
	с	$\frac{2\sqrt{7}}{7}$	d	$\frac{\sqrt{2}}{2}$		
	0	7 ./2	f			
	e	N2 /5	1	γ5 1		
	g	$\frac{\sqrt{3}}{3}$	h	$\frac{1}{3}$		
		5		5		
5	a	$\frac{3+\sqrt{5}}{3+\sqrt{5}}$	b	$\frac{2(4-\sqrt{3})}{2(4-\sqrt{3})}$	c	$6(5+\sqrt{2})$
-		4		13	-	23
6	<i>x</i> –	у				
7	9	$3+2\sqrt{2}$	h	$\sqrt{x} + \sqrt{y}$		
,	a	$3 \pm 2 \sqrt{2}$	U	$\overline{x-y}$		

1.1	I can use the rules of indices for rational n	<u>.</u>	•	<u> </u>
1.2	I can write a number exactly using surds	:)		•
1.3	I can rationalize the denominator when it is a surd	:		

Q1.

(a) Simplify $\sqrt{32} + \sqrt{18}$ giving your answer in the form $a\sqrt{2}$, where *a* is an integer.

(2)

(b) Simplify

$\frac{\sqrt{32}+\sqrt{18}}{3+\sqrt{2}}$

giving your answer in the form $b\sqrt{2} + c$, where b and c are integers.

(4)

Q2.

(a) Find the value of $16^{\frac{1}{4}}$

(b) Simplify $x(2x^{-\frac{1}{4}})^4$

(2)

Q3.

Simplify

$$\frac{5-2\sqrt{3}}{\sqrt{3}-1}$$

giving your answer in the form $p + q \sqrt{3}$, where p and q are rational numbers.

(4)

Q4.

(a) Evaluate $(32)^{\frac{3}{5}}$, giving your answer as an integer.

(2)

(b) Simplify fully
$$\left(\frac{25x^4}{4}\right)^{\frac{1}{2}}$$

Q5.

Show that $\frac{2}{\sqrt{12} - \sqrt{8}}$ can be written in the form $\sqrt{a} + \sqrt{b}$, where *a* and *b* are integers.

(5)

Q6.

Find the value of

(a)
$$25^{\frac{1}{2}}$$
 (1)
(b) $25^{\frac{3}{2}}$

(a) Write down the value of $125^{\frac{1}{3}}$.

(1)

(2)

(b) Find the value of $125^{-\frac{2}{3}}$.

Q8.

Expand and simplify $(\sqrt{7} + 2)(\sqrt{7} - 2)$.

(2)

(2)

Q9.

Write

$\sqrt{(75)} - \sqrt{(27)}$

in the form $k \sqrt{x}$, where k and x are integers.

Q10.

(a) Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$

(3)

(b) Express $\frac{7+\sqrt{5}}{3+\sqrt{5}}$ in the form $a + b\sqrt{5}$, where a and b are integers.

(3)

Q11.

Simplify (a) $(3\sqrt{7})^2$

|--|

(b)
$$(8 + \sqrt{5})(2 - \sqrt{5})$$
 (3)

Q12.

Given that $32 \sqrt{2} = 2^a$, find the value of *a*.

Q13.

Express 8^{2x+3} in the form 2^y , stating *y* in terms of *x*.

(2)

(3)

Q14.

(i) Express

$$(5 - \sqrt{8})(1 + \sqrt{2})$$

in the form $a + b \sqrt{2}$, where a and b are integers.

(3)

(3)

(ii) Express

$$\sqrt{80}$$
 + $\frac{30}{\sqrt{5}}$

in the form $c \sqrt{5}$, where *c* is an integer.

Q15.

Simplify

$$\frac{7+\sqrt{5}}{\sqrt{5}-1}$$

giving your answer in the form $a + b\sqrt{5}$, where a and b are integers.

(4)

Q16.

(a) Find the value of $8^{\frac{5}{3}}$

(2)

 $2x^{\frac{1}{2}}$ (b) Simplify fully $4x^2$

(3)

Q17.

Express $\frac{15}{\sqrt{3}} - \sqrt{27}$ in the form $k\sqrt{3}$, where k is an integer.

Q18.

Solve (a) $2^y = 8$

(b) $2^x \times 4^{x+1} = 8$

(4)

(1)

(4)

Q19.

(a) Evaluate $81^{\frac{3}{2}}$

(b) Simplify fully $x^2 \left(4x^{-\frac{1}{2}}\right)^2$

(2)

(2)

Q20.

Solve the equation

$$10 + x\sqrt{8} = \frac{6x}{\sqrt{2}}$$

Give your answer in the form $a\sqrt{b}$ where *a* and *b* are integers.

(4)

Q21.

Simplify

(a) $(2\sqrt{5})^2$

(1)

(b)
$$\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$$
 giving your answer in the form $a + \sqrt{b}$, where a and b are integers.

(4)

Q22.

(a) Write down the value of $16^{\frac{1}{4}}$.

(1)

(b) Simplify $(16x^{12})^{\frac{3}{4}}$.

Q23.

Simplify

$$\frac{5-\sqrt{3}}{2+\sqrt{3}},$$

giving your answer in the form $a + b\sqrt{3}$, where a and b are integers.

Q24.

Simplify $(3 + \sqrt{5})(3 - \sqrt{5})$.

Q25.

(a) Find the value of $8^{\frac{4}{3}}$.

(b) Simplify
$$\frac{15x^{\frac{4}{3}}}{3x}$$

(2)

(2)

(4)

Q26.

Express 9^{3x+1} in the form 3^y , giving y in the form ax + b, where a and b are constants.

(2)

Q27.

(a) Simplify

$$\sqrt{50} - \sqrt{18}$$

giving your answer in the form $a\sqrt{2}$, where *a* is an integer.

(2)

(b) Hence, or otherwise, simplify

$$\frac{12\sqrt{3}}{\sqrt{50}-\sqrt{18}}$$

giving your answer in the form $b\sqrt{c}$, where b and c are integers and $b \neq 1$

(3)