Edexcel New GCE A Level Maths workbook

Straight line graphs Parallel and Perpendicular lines.

Edited by: K V Kumaran

kumarmaths.weebly.com

1

Straight line graphs

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation y = mx + c, where *m* is the gradient and *c* is the *y*-intercept (where x = 0).
- The equation of a straight line can be written in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
- When given the coordinates (*x*₁, *y*₁) and (*x*₂, *y*₂) of two points on a line the gradient is calculated using the

formula $m = \frac{y_2 - y_1}{x_2 - x_1}$

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3.

Write the equation of the line in the form ax + by + c = 0.

$m = -\frac{1}{2}$ and $c = 3$ So $y = -\frac{1}{2}x + 3$	1 A straight line has equation y = mx + c. Substitute the gradient and y-intercept given in the question
$\frac{1}{2}x + y - 3 = 0$	2 Rearrange the equation so all the terms are on one side and 0 is on
x + 2y - 6 = 0	the other side.3 Multiply both sides by 2 to eliminate the denominator.

Example 2 Find the gradient and the *y*-intercept of the line with the equation 3y - 2x + 4 = 0.

3y - 2x + 4 = 0	1 Make <i>y</i> the subject of the equation.
$ y = 2x - 4 y = \frac{2}{3}x - \frac{4}{3} $	2 Divide all the terms by three to get the equation in the form $y =$
Gradient = $m = \frac{2}{3}$	3 In the form $y = mx + c$, the gradient is <i>m</i> and the <i>y</i> -intercept is <i>c</i> .
y-intercept = $c = -\frac{4}{3}$	

Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3.

m = 3 y = 3x + c	1 Substitute the gradient given in the question into the equation of a straight line $y = mx + c$.
$13 = 3 \times 5 + c$ $13 = 15 + c$	 Substitute the coordinates x = 5 and y = 13 into the equation. Simplify and solve the equation.
c = -2 y = 3x - 2	4 Substitute $c = -2$ into the equation y = 3x + c

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

$x_1 = 2$, $x_2 = 8$, $y_1 = 4$ and $y_2 = 7$	1 Substitute the coordinates into the
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$	equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out
$y = \frac{1}{2}x + c$	the gradient of the line. 2 Substitute the gradient into the equation of a straight line y = mx + c.
$4 = \frac{1}{2} \times 2 + c$ c = 3	3 Substitute the coordinates of either point into the equation.4 Simplify and solve the equation.
$y = \frac{1}{2}x + 3$	5 Substitute $c = 3$ into the equation $y = \frac{1}{2}x + c$

Practice

1 Find the gradient and the *y*-intercept of the following equations.

a	y = 3x + 5	b	$y = -\frac{1}{2}x - 7$	
c	2y = 4x - 3	d	x + y = 5	Hint Rearrange the equations
e	2x - 3y - 7 = 0	f	5x + y - 4 = 0	to the form $y = mx + c$

2 Copy and complete the table, giving the equation of the line in the form y = mx + c.

Gradient	y-intercept	Equation of the line
5	0	
-3	2	
4	-7	

- 3 Find, in the form ax + by + c = 0 where *a*, *b* and *c* are integers, an equation for each of the lines with the following gradients and *y*-intercepts.
 - agradient $-\frac{1}{2}$, y-intercept -7bgradient 2, y-intercept 0cgradient $\frac{2}{3}$, y-intercept 4dgradient -1.2, y-intercept -2
- 4 Write an equation for the line which passes though the point (2, 5) and has gradient 4.
- 5 Write an equation for the line which passes through the point (6, 3) and has gradient $-\frac{2}{3}$
- 6 Write an equation for the line passing through each of the following pairs of points.
 - a(4, 5), (10, 17)b(0, 6), (-4, 8)c(-1, -7), (5, 23)d(3, 10), (4, 7)

Extend

7 The equation of a line is 2y + 3x - 6 = 0. Write as much information as possible about this line.

Answers

1 a
$$m = 3, c = 5$$

b $m = -\frac{1}{2}, c = -7$
c $m = 2, c = -\frac{3}{2}$
d $m = -1, c = 5$
e $m = \frac{2}{3}, c = -\frac{7}{3} \text{ or } -2\frac{1}{3}$
f $m = -5, c = 4$

2

Gradient	y-intercept	Equation of the line
5	0	y = 5x
-3	2	y = -3x + 2
4	-7	y = 4x - 7

3 a x + 2y + 14 = 0 **b** 2x - y = 0

- **c** 2x 3y + 12 = 0 **d** 6x + 5y + 10 = 0
- **4** y = 4x 3
- **5** $y = -\frac{2}{3}x + 7$

6 a y = 2x - 3 **b** $y = -\frac{1}{2}x + 6$

c y = 5x - 2 **d** y = -3x + 19

7 $y = -\frac{3}{2}x + 3$, the gradient is $-\frac{3}{2}$ and the *y*-intercept is 3. The line intercepts the axes at (0, 3) and (2, 0).

Students may sketch the line or give coordinates that lie on the line such as $\left(1, \frac{3}{2}\right)$ or $\left(4, -3\right)$.

Parallel and perpendicular lines

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation y = mx + c has gradient $-\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to y = 2x + 4 which passes through the point (4, 9).

y = 2x + 4 $m = 2$	1 As the lines are parallel they have the same gradient.
y = 2x + c	2 Substitute $m = 2$ into the equation of a straight line $y = mx + c$.
$9 = 2 \times 4 + c$	3 Substitute the coordinates into the equation $y = 2x + c$
9 = 8 + c	4 Simplify and solve the equation.
c = 1 y = 2x + 1	5 Substitute $c = 1$ into the equation
	y = 2x + c

Example 2 Find the equation of the line perpendicular to y = 2x - 3 which passes through the point (-2, 5).

y = 2x - 3 m = 2 $-\frac{1}{m} = -\frac{1}{2}$	1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
$y = -\frac{1}{2}x + c$	2 Substitute $m = -\frac{1}{2}$ into $y = mx + c$.
$5 = -\frac{1}{2} \times (-2) + c$	3 Substitute the coordinates (-2, 5)
2 2 2	into the equation $y = -\frac{1}{2}x + c$
5 = 1 + c	4 Simplify and solve the equation.
$c = 4$ $y = -\frac{1}{2}x + 4$	5 Substitute $c = 4$ into $y = -\frac{1}{2}x + c$.

Example 3	A line passes through the points $(0, 5)$ and $(9, -1)$.
	Find the equation of the line which is perpendicular to the line and passes through
	its midpoint.

1 Substitute the coordinates into the $x_1 = 0$, $x_2 = 9$, $y_1 = 5$ and $y_2 = -1$ equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 5}{9 - 0}$ the gradient of the line. $=\frac{-6}{9}=-\frac{2}{3}$ 2 As the lines are perpendicular, the $-\frac{1}{m} = \frac{3}{2}$ gradient of the perpendicular line is $-\frac{1}{m}$. $y = \frac{3}{2}x + c$ **3** Substitute the gradient into the equation y = mx + c. Midpoint = $\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right) = \left(\frac{9}{2}, 2\right)$ 4 Work out the coordinates of the midpoint of the line. $2 = \frac{3}{2} \times \frac{9}{2} + c$ 5 Substitute the coordinates of the midpoint into the equation. $c = -\frac{19}{4}$ 6 Simplify and solve the equation. 7 Substitute $c = -\frac{19}{4}$ into the equation $y = \frac{3}{2}x - \frac{19}{4}$ $y = \frac{3}{2}x + c$

Practice

- 1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
 - **a** y = 3x + 1 (3, 2)**b** y = 3 2x (1, 3)**c** 2x + 4y + 3 = 0 (6, -3)**d** 2y 3x + 2 = 0 (8, 20)

2 Find the equation of the line perpendicular to $y = \frac{1}{2}x - 3$ which passes through the point (-5, 3).

Hint If $m = \frac{a}{b}$ then the negative reciprocal $-\frac{1}{m} = -\frac{b}{a}$

- **3** Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
 - **a** y = 2x 6 (4, 0) **b** $y = -\frac{1}{3}x + \frac{1}{2}$ (2, 13) **c** x - 4y - 4 = 0 (5, 15) **d** 5y + 2x - 5 = 0 (6, 7)

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.

a (4, 3), (-2, -9) **b** (0, 3), (-10, 8)

Extend

- 5 Work out whether these pairs of lines are parallel, perpendicular or neither.
 - **a** y = 2x + 3y = 2x - 7**b** y = 3x2x + y - 3 = 0**c** y = 4x - 34y + x = 2
 - **d** 3x y + 5 = 0x + 3y = 1**e** 2x + 5y - 1 = 0y = 2x + 7**f** 2x - y = 66x - 3y + 3 = 0

6 The straight line L_1 passes through the points A and B with coordinates (-4, 4) and (2, 1), respectively.

a Find the equation of L_1 in the form ax + by + c = 0

The line L_2 is parallel to the line L_1 and passes through the point *C* with coordinates (-8, 3). **b** Find the equation of L_2 in the form ax + by + c = 0

The line L_3 is perpendicular to the line L_1 and passes through the origin.

c Find an equation of L_3

Answers

1	a	y = 3x - 7	b	y = -2x + 5		
	c	$y = -\frac{1}{2}x$	d	$y = \frac{3}{2}x + 8$		
2	y =	x - 2x - 7				
3	a	$y = -\frac{1}{2}x + 2$	b	y = 3x + 7		
	c	y = -4x + 35	d	$y = \frac{5}{2}x - 8$		
4	a	$y = -\frac{1}{2}x$	b	y = 2x		
5	a d	Parallel Perpendicular	b e	Neither Neither	c f	Perpendicular Parallel
6	a	x + 2y - 4 = 0	b	x + 2y + 2 = 0	с	y = 2x

Q1.

The point *A* (-6, 4) and the point *B* (8, -3) lie on the line *L*. (a) Find an equation for *L* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

(4)

(b) Find the distance AB, giving your answer in the form $k\sqrt{5}$, where k is an integer.

(3)

Q2.

The points *P* and *Q* have coordinates (-1, 6) and (9, 0) respectively.

The line l is perpendicular to PQ and passes through the mid-point of PQ.

Find an equation for *l*, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

(5)

Q3.

The line l₁ has equation 3x + 5y - 2 = 0
(a) Find the gradient of l₁.
(2)
The line l₂ is perpendicular to l₁ and passes through the point (3, 1).
(b) Find the equation of l₂ in the form y = mx + c, where m and c are constants.

Q4.

The line l_1 has equation y = -2x + 3

The line l_2 is perpendicular to l_1 and passes through the point (5, 6).

(a) Find an equation for l_2 in the form ax + by + c = 0, where a, b and c are integers.

(3)

(3)

The line l_2 crosses the x-axis at the point A and the y-axis at the point B.

(b) Find the *x*-coordinate of *A* and the *y*-coordinate of *B*.

(2)

The line l_1 has equation 2x - 3y + 12 = 0(a) find the gradient of l_1 .

The line *l*₁ crosses the *x*-axis at the point *A* and the *y*-axis at the point *B*, as shown in Figure 1.
The line *l*₂ is perpendicular to *l*₁ and passes through *B*.
(b) Find an equation of *l*₂.

The line *l*₂ crosses the *x*-axis at the point *C*. (c) Find the area of triangle *ABC*.

(4)

(3)

(1)

kumarmaths.weebly.com 12

Q5.

Q6.

The line L₁ has equation 2y - 3x - k = 0, where k is a constant.
Given that the point A (1, 4) lies on L₁, find

(a) the value of k,

(b) the gradient of L₁.

The line L₂ passes through A and is perpendicular to L₁

(c) Find an equation of L_2 giving your answer in the form ax + by + c = 0, where a, b and c are integers.

The line L_2 crosses the *x*-axis at the point *B*.

(d) Find the coordinates of B.

(e) Find the exact length of *AB*.

(2)

(2)

(1)

(2)

(4)

Figure 1

The points *A* and *B* have coordinates (6, 7) and (8, 2) respectively. The line *l* passes through the point *A* and is perpendicular to the line *AB*, as shown in Figure 1. (a) Find an equation for *l* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

(4)

Given that l intersects the y-axis at the point C, find

(b) the coordinates of C,

Q7.

(c) the area of $\triangle OCB$, where O is the origin.

(2)

(2)

The line l_1 , shown in Figure 2 has equation 2x + 3y = 26The line l_2 passes through the origin *O* and is perpendicular to l_1 (a) Find an equation for the line l_2

The line l_2 intersects the line l_1 at the point *C*.

Line l_1 crosses the *y*-axis at the point *B* as shown in Figure 2.

(b) Find the area of triangle *OBC*.

Give your answer in the form $\frac{a}{b}$, where *a* and *b* are integers to be determined.

(6)

(4)

Figure 2

Figure 2 shows a right angled triangle LMN.

The points *L* and *M* have coordinates (-1, 2) and (7, -4) respectively.

(a) Find an equation for the straight line passing through the points *L* and *M*.

Give your answer in the form ax + by + c = 0, where a, b and c are integers.

Given that the coordinates of point *N* are (16, *p*), where *p* is a constant, and angle $LMN = 90^{\circ}$, (b) find the value of *p*.

(3)

(4)

Given that there is a point *K* such that the points *L*, *M*, *N*, and *K* form a rectangle, (c) find the *y* coordinate of *K*.

(2)

The points P(0, 2) and Q(3, 7) lie on the line l_1 , as shown in Figure 2.

The line l_2 is perpendicular to l_1 , passes through Q and crosses the x-axis at the point R, as shown in Figure 2.

Find

(a) an equation for l_2 , giving your answer in the form ax + by + c = 0, where a, b and c are integers,

(b) the exact coordinates of R,

(2)

(5)

(c) the exact area of the quadrilateral *ORQP*, where *O* is the origin.

(5)

Q10.