Edexcel

New GCE A Level Maths

workbook

Straight line graphs

 Parallel and Perpendicular lines.

Straight line graphs

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation $y=m x+c$, where m is the gradient and c is the y-intercept (where $x=0$).
- The equation of a straight line can be written in the form $a x+b y+c=0$, where a, b and c are integers.
- When given the coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of two points on a line the gradient is calculated using the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Examples

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3 .
Write the equation of the line in the form $a x+b y+c=0$.

$$
\begin{aligned}
& m=-\frac{1}{2} \text { and } c=3 \\
& \text { So } y=-\frac{1}{2} x+3 \\
& \frac{1}{2} x+y-3=0 \\
& x+2 y-6=0
\end{aligned}
$$

1 A straight line has equation $y=m x+c$. Substitute the gradient and y-intercept given in the question into this equation.
2 Rearrange the equation so all the terms are on one side and 0 is on the other side.
3 Multiply both sides by 2 to eliminate the denominator.

Example 2 Find the gradient and the y-intercept of the line with the equation $3 y-2 x+4=0$.

$3 y-2 x+4=0$ $3 y=2 x-4$ $y=\frac{2}{3} x-\frac{4}{3}$	$\mathbf{1}$Make y the subject of the equation. Gradient $=m=\frac{2}{3}$
y-intercept $=c=-\frac{4}{3}$	Divide all the terms by three to get the equation in the form $y=\ldots$
In the form $y=m x+c$, the gradient	
is m and the y-intercept is c.	

Example 3 Find the equation of the line which passes through the point $(5,13)$ and has gradient 3 .

$$
\begin{aligned}
& m=3 \\
& y=3 x+c \\
& 13=3 \times 5+c \\
& 13=15+c \\
& c=-2 \\
& y=3 x-2
\end{aligned}
$$

1 Substitute the gradient given in the question into the equation of a straight line $y=m x+c$.
2 Substitute the coordinates $x=5$ and $y=13$ into the equation.
3 Simplify and solve the equation.

4 Substitute $c=-2$ into the equation $y=3 x+c$

Example 4 Find the equation of the line passing through the points with coordinates $(2,4)$ and $(8,7)$.

$$
\begin{aligned}
& x_{1}=2, x_{2}=8, y_{1}=4 \text { and } y_{2}=7 \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-4}{8-2}=\frac{3}{6}=\frac{1}{2} \\
& y=\frac{1}{2} x+c \\
& 4=\frac{1}{2} \times 2+c \\
& c=3 \\
& y=\frac{1}{2} x+3
\end{aligned}
$$

1 Substitute the coordinates into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to work out the gradient of the line.
2 Substitute the gradient into the equation of a straight line $y=m x+c$.
3 Substitute the coordinates of either point into the equation.
4 Simplify and solve the equation.
5 Substitute $c=3$ into the equation

$$
y=\frac{1}{2} x+c
$$

Practice

1 Find the gradient and the y-intercept of the following equations.
a $y=3 x+5$
b $\quad y=-\frac{1}{2} x-7$
c $\quad 2 y=4 x-3$
d $\quad x+y=5$
e $2 x-3 y-7=0$
f $\quad 5 x+y-4=0$
Hint
Rearrange the equations
to the form $y=m x+c$

2 Copy and complete the table, giving the equation of the line in the form $y=m x+c$.

Gradient	\boldsymbol{y}-intercept	Equation of the line
5	0	
-3	2	
4	-7	

3 Find, in the form $a x+b y+c=0$ where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts.
a gradient $-\frac{1}{2}, y$-intercept -7
b gradient $2, y$-intercept 0
c \quad gradient $\frac{2}{3}, y$-intercept 4
d gradient $-1.2, y$-intercept -2

4 Write an equation for the line which passes though the point $(2,5)$ and has gradient 4.
5 Write an equation for the line which passes through the point $(6,3)$ and has gradient $-\frac{2}{3}$

6 Write an equation for the line passing through each of the following pairs of points.
a $(4,5),(10,17)$
b $(0,6),(-4,8)$
c $(-1,-7),(5,23)$
d $(3,10),(4,7)$

Extend

7 The equation of a line is $2 y+3 x-6=0$.
Write as much information as possible about this line.

Answers

1 a $m=3, c=5$
b $\quad m=-\frac{1}{2}, c=-7$
c $\quad m=2, c=-\frac{3}{2}$
d $m=-1, c=5$
e $\quad m=\frac{2}{3}, c=-\frac{7}{3}$ or $-2 \frac{1}{3}$
f $m=-5, c=4$

2

Gradient	\boldsymbol{y}-intercept	Equation of the line
5	0	$y=5 x$
-3	2	$y=-3 x+2$
4	-7	$y=4 x-7$

3 a $x+2 y+14=0$
b $\quad 2 x-y=0$
c $\quad 2 x-3 y+12=0$
d $\quad 6 x+5 y+10=0$
$4 y=4 x-3$
$5 y=-\frac{2}{3} x+7$
6 a $\quad y=2 x-3$
b $\quad y=-\frac{1}{2} x+6$
c $\quad y=5 x-2$
d $\quad y=-3 x+19$
$7 y=-\frac{3}{2} x+3$, the gradient is $-\frac{3}{2}$ and the y-intercept is 3 .
The line intercepts the axes at $(0,3)$ and $(2,0)$.
Students may sketch the line or give coordinates that lie on the line such as $\left(1, \frac{3}{2}\right)$ or $(4,-3)$.

Parallel and perpendicular lines

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation $y=m x+c$ has gradient $-\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to $y=2 x+4$ which passes through the point $(4,9)$.

$$
\begin{aligned}
& y=2 x+4 \\
& m=2 \\
& y=2 x+c \\
& 9=2 \times 4+c \\
& 9=8+c \\
& c=1 \\
& y=2 x+1
\end{aligned}
$$

1 As the lines are parallel they have the same gradient.
2 Substitute $m=2$ into the equation of a straight line $y=m x+c$.
3 Substitute the coordinates into the equation $y=2 x+c$
4 Simplify and solve the equation.
5 Substitute $c=1$ into the equation $y=2 x+c$

Example 2 Find the equation of the line perpendicular to $y=2 x-3$ which passes through the point $(-2,5)$.

$$
\begin{aligned}
& y=2 x-3 \\
& m=2 \\
& -\frac{1}{m}=-\frac{1}{2} \\
& y=-\frac{1}{2} x+c \\
& 5=-\frac{1}{2} \times(-2)+c \\
& 5=1+c \\
& c=4 \\
& y=-\frac{1}{2} x+4
\end{aligned}
$$

1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
2 Substitute $m=-\frac{1}{2}$ into $y=m x+c$.
3 Substitute the coordinates $(-2,5)$ into the equation $y=-\frac{1}{2} x+c$
4 Simplify and solve the equation.
5 Substitute $c=4$ into $y=-\frac{1}{2} x+c$.

Example 3 A line passes through the points $(0,5)$ and $(9,-1)$.
Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$x_{1}=0, x_{2}=9, y_{1}=5$ and $y_{2}=-1$	
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-5}{9-0}$	
$=\frac{-6}{9}=-\frac{2}{3}$	Substitute the coordinates into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to work out
$-\frac{1}{m}=\frac{3}{2}$	the gradient of the line.
$y=\frac{3}{2} x+c$	As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
Midpoint $=\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right)=\left(\frac{9}{2}, 2\right)$	Substitute the gradient into the equation $y=m x+c$.
$2=\frac{3}{2} \times \frac{9}{2}+c$	Work out the coordinates of the midpoint of the line.
$c=-\frac{19}{4}$	Substitute the coordinates of the midpoint into the equation.
$y=\frac{\mathbf{6}}{2} x-\frac{19}{4}$	Simplify and solve the equation. Substitute $c=-\frac{19}{4}$ into the equation
$y=\frac{3}{2} x+c$.	

Practice

1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
a $y=3 x+1 \quad(3,2)$
b $\quad y=3-2 x \quad(1,3)$
c $2 x+4 y+3=0 \quad(6,-3)$
d $2 y-3 x+2=0$

2 Find the equation of the line perpendicular to $y=\frac{1}{2} x-3$ which passes through the point $(-5,3)$.

Hint

If $m=\frac{a}{b}$ then the
negative reciprocal
$-\frac{1}{m}=-\frac{b}{a}$

3 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
a $y=2 x-6 \quad(4,0)$
b $y=-\frac{1}{3} x+\frac{1}{2}$
c $\quad x-4 y-4=0$
$(5,15)$
d $\quad 5 y+2 x-5=0$
$(6,7)$

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.
a $(4,3),(-2,-9)$
b $(0,3),(-10,8)$

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.
a $y=2 x+3$ $y=2 x-7$
b $\quad y=3 x$
$2 x+y-3=0$
c $\quad y=4 x-3$
$4 y+x=2$
d $3 x-y+5=0$
e $\quad \begin{aligned} & 2 x+5 y-1=0 \\ & y=2 x+7\end{aligned}$
$y=2 x+7$
f $\quad 2 x-y=6$
$6 x-3 y+3=0$

6 The straight line \mathbf{L}_{1} passes through the points A and B with coordinates $(-4,4)$ and $(2,1)$, respectively.
a Find the equation of \mathbf{L}_{1} in the form $a x+b y+c=0$

The line \mathbf{L}_{2} is parallel to the line \mathbf{L}_{1} and passes through the point C with coordinates $(-8,3)$.
b Find the equation of \mathbf{L}_{2} in the form $a x+b y+c=0$

The line \mathbf{L}_{3} is perpendicular to the line $\mathbf{L}_{\mathbf{1}}$ and passes through the origin.
c Find an equation of $\mathbf{L}_{\mathbf{3}}$

Answers

1 a $y=3 x-7$
c $y=-\frac{1}{2} x$
b $\quad y=-2 x+5$
d $\quad y=\frac{3}{2} x+8$
$2 y=-2 x-7$
3 a $y=-\frac{1}{2} x+2$
b $\quad y=3 x+7$
c $y=-4 x+35$
d $\quad y=\frac{5}{2} x-8$
4 a $y=-\frac{1}{2} x$
b $\quad y=2 x$
5 a Parallel
d Perpendicular
b Neither
e Neither
c Perpendicular
f Parallel
6 a $x+2 y-4=0$
b $\quad x+2 y+2=0$
c $y=2 x$

Q1.

The point $A(-6,4)$ and the point $B(8,-3)$ lie on the line L.
(a) Find an equation for L in the form $a x+b y+c=0$, where a, b and c are integers.
(b) Find the distance $A B$, giving your answer in the form $k \sqrt{ } 5$, where k is an integer.

Q2.
The points P and Q have coordinates $(-1,6)$ and $(9,0)$ respectively.
The line l is perpendicular to $P Q$ and passes through the mid-point of $P Q$.
Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Q3.
The line l_{1} has equation $3 x+5 y-2=0$
(a) Find the gradient of l_{1}.

The line l_{2} is perpendicular to l_{1} and passes through the point $(3,1)$.
(b) Find the equation of l_{2} in the form $y=m x+c$, where m and c are constants.

Q4.
The line l_{1} has equation $y=-2 x+3$
The line l_{2} is perpendicular to l_{1} and passes through the point $(5,6)$.
(a) Find an equation for l_{2} in the form $a x+b y+c=0$, where a, b and c are integers.

The line l_{2} crosses the x-axis at the point A and the y-axis at the point B.
(b) Find the x-coordinate of A and the y-coordinate of B.

Q5.

Figure 1

The line l_{1} has equation $2 x-3 y+12=0$
(a) find the gradient of l_{1}.

The line l_{1} crosses the x-axis at the point A and the y-axis at the point B, as shown in Figure 1 . The line l_{2} is perpendicular to l_{1} and passes through B.
(b) Find an equation of l_{2}.

The line l_{2} crosses the x-axis at the point C.
(c) Find the area of triangle $A B C$.

Q6.

The line L_{1} has equation $2 y-3 x-k=0$, where k is a constant.
Given that the point $A(1,4)$ lies on L_{1}, find
(a) the value of k,
(b) the gradient of L_{1}.

The line L_{2} passes through A and is perpendicular to L_{1}
(c) Find an equation of L_{2} giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The line L_{2} crosses the x-axis at the point B.
(d) Find the coordinates of B.
(e) Find the exact length of $A B$.

Q7.

Figure 1
The points A and B have coordinates $(6,7)$ and $(8,2)$ respectively.
The line l passes through the point A and is perpendicular to the line $A B$, as shown in Figure 1.
(a) Find an equation for l in the form $a x+b y+c=0$, where a, b and c are integers.

Given that l intersects the y-axis at the point C, find
(b) the coordinates of C,
(c) the area of $\triangle O C B$, where O is the origin.

Q8.

Figure 2
The line l_{1}, shown in Figure 2 has equation $2 x+3 y=26$
The line l_{2} passes through the origin O and is perpendicular to l_{1}
(a) Find an equation for the line l_{2}

The line l_{2} intersects the line l_{1} at the point C.
Line l_{1} crosses the y-axis at the point B as shown in Figure 2.
(b) Find the area of triangle $O B C$.

Give your answer in the form a / b, where a and b are integers to be determined.

Q9.

Figure 2
Figure 2 shows a right angled triangle $L M N$.
The points L and M have coordinates $(-1,2)$ and $(7,-4)$ respectively.
(a) Find an equation for the straight line passing through the points L and M.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Given that the coordinates of point N are $(16, p)$, where p is a constant, and angle $L M N=90^{\circ}$,
(b) find the value of p.

Given that there is a point K such that the points L, M, N, and K form a rectangle,
(c) find the y coordinate of K.

Q10.

Figure 2
The points $P(0,2)$ and $Q(3,7)$ lie on the line l_{1}, as shown in Figure 2.
The line l_{2} is perpendicular to l_{1}, passes through Q and crosses the x-axis at the point R, as shown in Figure 2.
Find
(a) an equation for l_{2}, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers,
(b) the exact coordinates of R,
(c) the exact area of the quadrilateral $O R Q P$, where O is the origin.

