Edexcel
 New GCE A Level Maths
 workbook
 Solving Linear and
 Quadratic Inequalities

Linear inequalities

A LEVEL LINKS

Scheme of work: 1d. Inequalities - linear and quadratic (including graphical solutions)

Key points

- Solving linear inequalities uses similar methods to those for solving linear equations.
- When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >.

Examples

Example 1 Solve $-8 \leq 4 x<16$

$-8 \leq 4 x<16$	Divide all three terms by 4.
$-2 \leq x<4$	

Example 2 Solve $4 \leq 5 x<10$

| $4 \leq 5 x<10$ |
| :--- | :--- |
| $\frac{4}{5} \leq x<2$ |\quad Divide all three terms by 5.0 . \quad.

Example 3 Solve $2 x-5<7$

$$
\begin{array}{rl|ll}
2 x-5 & <7 & \mathbf{1} & \text { Add } 5 \text { to both sides. } \\
2 x & <12 & \mathbf{2} & \text { Divide both sides by } 2 . \\
x & <6 & &
\end{array}
$$

Example 4 Solve 2-5x ≥-8

$$
\begin{aligned}
2-5 x & \geq-8 \\
-5 x & \geq-10 \\
x & \leq 2
\end{aligned}
$$

1 Subtract 2 from both sides.
2 Divide both sides by -5 .
Remember to reverse the inequality when dividing by a negative number.

Example 5 Solve 4($x-2$)>3(9-x)

$$
\begin{aligned}
4(x-2) & >3(9-x) \\
4 x-8 & >27-3 x \\
7 x-8 & >27 \\
7 x & >35 \\
x & >5
\end{aligned}
$$

1 Expand the brackets.
2 Add $3 x$ to both sides.
3 Add 8 to both sides.
4 Divide both sides by 7.

Practice

1 Solve these inequalities.
a $4 x>16$
b $\quad 5 x-7 \leq 3$
c $\quad 1 \geq 3 x+4$
d $5-2 x<12$
e $\quad \frac{x}{2} \geq 5$
f $8<3-\frac{x}{3}$

2 Solve these inequalities.
a $\frac{x}{5}<-4$
b $\quad 10 \geq 2 x+3$
c $\quad 7-3 x>-5$

3 Solve
a $\quad 2-4 x \geq 18$
b $\quad 3 \leq 7 x+10<45$
c $\quad 6-2 x \geq 4$
d $\quad 4 x+17<2-x$
e $\quad 4-5 x<-3 x$
f $-4 x \geq 24$

4 Solve these inequalities.
a $3 t+1<t+6$
b $\quad 2(3 n-1) \geq n+5$

5 Solve.
a $3(2-x)>2(4-x)+4$
b $5(4-x)>3(5-x)+2$

Extend

6 Find the set of values of x for which $2 x+1>11$ and $4 x-2>16-2 x$.

Answers

1 a $x>4$
b $\quad x \leq 2$
c $\quad x \leq-1$
d $\quad x>-\frac{7}{2}$
e $\quad x \geq 10$
f $x<-15$
2 a $x<-20$
b $\quad x \leq 3.5$
c $\quad x<4$
3 a $x \leq-4$
b $\quad-1 \leq x<5$
c $\quad x \leq 1$
d $x<-3$
e $\quad x>2$
f $x \leq-6$
$4 \quad$ a $t<\frac{5}{2}$
b $\quad n \geq \frac{7}{5}$
5 a $\quad x<-6$
b $\quad x<\frac{3}{2}$
$6 x>5$ (which also satisfies $x>3$)

Quadratic inequalities

Key points

- First replace the inequality sign by $=$ and solve the quadratic equation.
- Sketch the graph of the quadratic function.
- Use the graph to find the values which satisfy the quadratic inequality.

Examples

Example 1 Find the set of values of x which satisfy $x^{2}+5 x+6>0$

$$
\begin{aligned}
& x^{2}+5 x+6=0 \\
& (x+3)(x+2)=0 \\
& x=-3 \text { or } x=-2
\end{aligned}
$$

 not needed as this is where $x^{2}+5 x+6<0$
$x<-3$ or $x>-2$

1 Solve the quadratic equation by factorising.

2 Sketch the graph of $y=(x+3)(x+2)$

3 Identify on the graph where $x^{2}+5 x+6>0$, i.e. where $y>0$

4 Write down the values which satisfy the inequality $x^{2}+5 x+6>0$

Example 2 Find the set of values of x which satisfy $x^{2}-5 x \leq 0$
$x^{2}-5 x=0$
$x(x-5)=0$
$x=0$ or $x=5$
y_{\uparrow}

1 Solve the quadratic equation by factorising.

2 Sketch the graph of $y=x(x-5)$
3 Identify on the graph where $x^{2}-5 x \leq 0$, i.e. where $y \leq 0$

4 Write down the values which satisfy the inequality $x^{2}-5 x \leq 0$

Example 3 Find the set of values of x which satisfy $-x^{2}-3 x+10 \geq 0$

1 Solve the quadratic equation by factorising.

2 Sketch the graph of $y=(-x+2)(x+5)=0$

3 Identify on the graph where $-x^{2}-3 x+10 \geq 0$, i.e. where $y \geq 0$

3 Write down the values which satisfy the inequality $-x^{2}-3 x+10 \geq 0$

Practice

$1 \quad$ Find the set of values of x for which $(x+7)(x-4) \leq 0$

2 Find the set of values of x for which $x^{2}-4 x-12 \geq 0$

3 Find the set of values of x for which $2 x^{2}-7 x+3<0$

4 Find the set of values of x for which $4 x^{2}+4 x-3>0$
5 Find the set of values of x for which $12+x-x^{2} \geq 0$

Extend

Find the set of values which satisfy the following inequalities.
$6 x^{2}+x \leq 6$
$7 x(2 x-9)<-10$
$8 \quad 6 x^{2} \geq 15+x$

Answers

$1-7 \leq x \leq 4$
$2 x \leq-2$ or $x \geq 6$
$3 \quad \frac{1}{2}<x<3$
$4 x<-\frac{3}{2}$ or $x>\frac{1}{2}$
$5-3 \leq x \leq 4$
$6-3 \leq x \leq 2$
$7 \quad 2<x<2 \frac{1}{2}$
$8 \quad x \leq-\frac{3}{2}$ or $x \geq \frac{5}{3}$

Q1.

Find the set values of x for which
(a) $4 x-5>15-x$
(b) $x(x-4)>12$

Q2.
Find the set of values of x for which
(a) $3(x-2)<8-2 x$
(b) $(2 x-7)(1+x)<0$
(c) both $3(x-2)<8-2 x$ and $(2 x-7)(1+x)<0$

Q3.

Find the set of values of x for which
(a) $4 x-3>7-x$
(b) $2 x^{2}-5 x-12<0$
(c) both $4 x-3>7-x$ and $2 x^{2}-5 x-12<0$

Q4.
Find the set of values of x for which
(a) $2(3 x+4)>1-x$
(b) $3 x^{2}+8 x-3<0$

Q5.

A rectangular room has a width of $x \mathrm{~m}$.
The length of the room is 4 m longer than its width.
Given that the perimeter of the room is greater than 19.2 m ,
(a) show that $x>2.8$

Given also that the area of the room is less than $21 \mathrm{~m}^{2}$,
(b) (i) write down an inequality, in terms of x, for the area of the room.
(ii) Solve this inequality.
(c) Hence find the range of possible values for x.

Q6.

Figure 1
Figure 1 shows the plan of a garden. The marked angles are right angles.
The six edges are straight lines.
The lengths shown in the diagram are given in metres.
Given that the perimeter of the garden is greater than 40 m ,
(a) show that $x>1.7$

Given that the area of the garden is less than $120 \mathrm{~m}^{2}$,
(b) form and solve a quadratic inequality in x.
(c) Hence state the range of the possible values of x.

Q7. Find the set of values of x for which
(a) $3(2 x+1)>5-2 x$,
(b) $2 x^{2}-7 x+3>0$,
(c) both $3(2 x+1)>5-2 x$ and $2 x^{2}-7 x+3>0$.

Q8. Find the set of values of x for which
(a) $4 x-3>7-x$
(b) $2 x^{2}-5 x-12<0$
(c) both $4 x-3>7-x$ and $2 x^{2}-5 x-12<0$

Q9. Find the set of values of x for which
(a) $2(3 x+4)>1-x$,
(2)
(b) $3 x^{2}+8 x-3<0$.

Q10. Find the set of values of x for which
(a) $3 x-7>3-x$,
(b) $x^{2}-9 x \leq 36$,
(c) both $3 x-7>3-x$ and $x^{2}-9 x \leq 36$.

