Edexcel
 New GCE A Level Maths workbook Factorisation, Completing the square, Solving Quadratics.

Edited by: K V Kumaran

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $a x^{2}+b x+c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is $a c$.
- An expression in the form $x^{2}-y^{2}$ is called the difference of two squares. It factorises to $(x-y)(x+$ y).

Examples

Example 1 Factorise $15 x^{2} y^{3}+9 x^{4} y$

$$
15 x^{2} y^{3}+9 x^{4} y=3 x^{2} y\left(5 y^{2}+3 x^{2}\right)
$$

The highest common factor is $3 x^{2} y$. So take $3 x^{2} y$ outside the brackets and then divide each term by $3 x^{2} y$ to find the terms in the brackets

Example 2 Factorise $4 x^{2}-25 y^{2}$

$4 x^{2}-25 y^{2}=(2 x+5 y)(2 x-5 y)$	This is the difference of two squares as the two terms can be written as $(2 x)^{2}$ and $(5 y)^{2}$

Example 3 Factorise $x^{2}+3 x-10$

$b=3, a c=-10$	$\mathbf{1}$Work out the two factors of $a c=-10$ which add to give $b=3$ (5 and -2$)$ So $x^{2}+3 x-10=x^{2}+5 x-2 x-10$	$\mathbf{2}$Rewrite the b term ($3 x)$ using these two factors
$=x(x+5)-2(x+5)$		
$=(x+5)(x-2)$	$\mathbf{3}$Factorise the first two terms and the last two terms	

Example $4 \quad$ Factorise $6 x^{2}-11 x-10$

$b=-11, a c=-60$ So	1 Work out the two factors of $a c=-60$ which add to give $b=-11$ (-15 and 4)
$6 x^{2}-11 x-10=6 x^{2}-15 x+4 x-10$	2 Rewrite the b term ($-11 x$) using these two factors
$=3 x(2 x-5)+2(2 x-5)$	3 Factorise the first two terms and the last two terms
$=(2 x-5)(3 x+2)$	$4(2 x-5)$ is a factor of both terms

Example 5 Simplify $\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$

$$
\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}
$$

For the numerator:
$b=-4, a c=-21$
So
$x^{2}-4 x-21=x^{2}-7 x+3 x-21$
$=x(x-7)+3(x-7)$

$$
=(x-7)(x+3)
$$

For the denominator:
$b=9, a c=18$

So
$2 x^{2}+9 x+9=2 x^{2}+6 x+3 x+9$
$=2 x(x+3)+3(x+3)$
$=(x+3)(2 x+3)$
So

$$
\begin{aligned}
\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9} & =\frac{(x-7)(x+3)}{(x+3)(2 x+3)} \\
& =\frac{x-7}{2 x+3}
\end{aligned}
$$

1 Factorise the numerator and the denominator

2 Work out the two factors of $a c=-21$ which add to give $b=-4$ (-7 and 3)

3 Rewrite the b term ($-4 x$) using these two factors
4 Factorise the first two terms and the last two terms
$5(x-7)$ is a factor of both terms
6 Work out the two factors of $a c=18$ which add to give $b=9$ (6 and 3)

7 Rewrite the b term ($9 x$) using these two factors
8 Factorise the first two terms and the last two terms
$9(x+3)$ is a factor of both terms
$10(x+3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Practice

1 Factorise.
a $\quad 6 x^{4} y^{3}-10 x^{3} y^{4}$
c $25 x^{2} y^{2}-10 x^{3} y^{2}+15 x^{2} y^{3}$

2 Factorise

Hint

Take the highest common factor outside the bracket.
a $\quad x^{2}+7 x+12$
b $x^{2}+5 x-14$
c $x^{2}-11 x+30$
e $x^{2}-7 x-18$
d $x^{2}-5 x-24$
f $x^{2}+x-20$
g $\quad x^{2}-3 x-40$
h $x^{2}+3 x-28$

3 Factorise
a $36 x^{2}-49 y^{2}$
b $4 x^{2}-81 y^{2}$
c $\quad 18 a^{2}-200 b^{2} c^{2}$

4 Factorise
a $\quad 2 x^{2}+x-3$
b $6 x^{2}+17 x+5$
c $\quad 2 x^{2}+7 x+3$
d $9 x^{2}-15 x+4$
e $\quad 10 x^{2}+21 x+9$
f $12 x^{2}-38 x+20$

5 Simplify the algebraic fractions.
a $\frac{2 x^{2}+4 x}{x^{2}-x}$
b $\frac{x^{2}+3 x}{x^{2}+2 x-3}$
c $\frac{x^{2}-2 x-8}{x^{2}-4 x}$
d $\frac{x^{2}-5 x}{x^{2}-25}$
e $\frac{x^{2}-x-12}{x^{2}-4 x}$
f $\frac{2 x^{2}+14 x}{2 x^{2}+4 x-70}$

6 Simplify
a $\frac{9 x^{2}-16}{3 x^{2}+17 x-28}$
b $\frac{2 x^{2}-7 x-15}{3 x^{2}-17 x+10}$
c $\frac{4-25 x^{2}}{10 x^{2}-11 x-6}$
d $\frac{6 x^{2}-x-1}{2 x^{2}+7 x-4}$

Extend

7 Simplify $\sqrt{x^{2}+10 x+25}$
8 Simplify $\frac{(x+2)^{2}+3(x+2)^{2}}{x^{2}-4}$

Answers

$1 \begin{array}{ll}\mathbf{a} & 2 x^{3} y^{3}(3 x-5 y) \\ & \text { c } \\ & 5 x^{2} y^{2}(5-2 x+3 y)\end{array}$ b $7 a^{3} b^{2}\left(3 b^{3}+5 a^{2}\right)$

2 a $(x+3)(x+4)$
c $\quad(x-5)(x-6)$
e $\quad(x-9)(x+2)$
g $(x-8)(x+5)$
b $(x+7)(x-2)$
d $(x-8)(x+3)$
f $\quad(x+5)(x-4)$
h $(x+7)(x-4)$

3 a $(6 x-7 y)(6 x+7 y)$
b $\quad(2 x-9 y)(2 x+9 y)$
c $2(3 a-10 b c)(3 a+10 b c)$

4 a $(x-1)(2 x+3)$
b $(3 x+1)(2 x+5)$
c $\quad(2 x+1)(x+3)$
d $\quad(3 x-1)(3 x-4)$
e $\quad(5 x+3)(2 x+3)$
f $2(3 x-2)(2 x-5)$

5 a $\frac{2(x+2)}{x-1}$
b $\frac{x}{x-1}$
c $\frac{x+2}{x}$
d $\frac{x}{x+5}$
e $\frac{x+3}{x}$
f $\frac{x}{x-5}$

6 a $\frac{3 x+4}{x+7}$
b $\quad \frac{2 x+3}{3 x-2}$
c $\frac{2-5 x}{2 x-3}$
d $\frac{3 x+1}{x+4}$
$7 \quad(x+5)$
$8 \frac{4(x+2)}{x-2}$

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $a x^{2}+b x+c$ into the form $p(x+q)^{2}+r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^{2}+6 x-2$

$$
\begin{aligned}
& x^{2}+6 x-2 \\
& =(x+3)^{2}-9-2 \\
& =(x+3)^{2}-11
\end{aligned}
$$

1 Write $x^{2}+b x+c$ in the form $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c$
2 Simplify

Example 2 Write $2 x^{2}-5 x+1$ in the form $p(x+q)^{2}+r$

$$
\begin{aligned}
& 2 x^{2}-5 x+1 \\
& =2\left(x^{2}-\frac{5}{2} x\right)+1 \\
& =2\left[\left(x-\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right]+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{25}{8}+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{17}{8}
\end{aligned}
$$

1 Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$
2 Now complete the square by writing $x^{2}-\frac{5}{2} x$ in the form $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$

3 Expand the square brackets - don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the factor of 2

4 Simplify

Practice

1 Write the following quadratic expressions in the form $(x+p)^{2}+q$
a $x^{2}+4 x+3$
b $x^{2}-10 x-3$
c $x^{2}-8 x$
d $x^{2}+6 x$
e $\quad x^{2}-2 x+7$
f $x^{2}+3 x-2$

2 Write the following quadratic expressions in the form $p(x+q)^{2}+r$
a $2 x^{2}-8 x-16$
b $4 x^{2}-8 x-16$
c $3 x^{2}+12 x-9$
d $2 x^{2}+6 x-8$

3 Complete the square.
a $\quad 2 x^{2}+3 x+6$
b $3 x^{2}-2 x$
c $5 x^{2}+3 x$
d $\quad 3 x^{2}+5 x+3$

Extend

4 Write $\left(25 x^{2}+30 x+12\right)$ in the form $(a x+b)^{2}+c$.

Answers

1 a $(x+2)^{2}-1$
c $(x-4)^{2}-16$
d $(x+3)^{2}-9$
e $(x-1)^{2}+6$
f $\left(x+\frac{3}{2}\right)^{2}-\frac{17}{4}$

2 a $2(x-2)^{2}-24$
c $3(x+2)^{2}-21$
$3 \quad \mathbf{a} \quad 2\left(x+\frac{3}{4}\right)^{2}+\frac{39}{8}$
c $\quad 5\left(x+\frac{3}{10}\right)^{2}-\frac{9}{20}$
$4 \quad(5 x+3)^{2}+3$
b $(x-5)^{2}-28$
b $\quad 4(x-1)^{2}-20$
d $2\left(x+\frac{3}{2}\right)^{2}-\frac{25}{2}$
b $3\left(x-\frac{1}{3}\right)^{2}-\frac{1}{3}$
d $3\left(x+\frac{5}{6}\right)^{2}+\frac{11}{12}$

Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $a x^{2}+b x+c=0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is $a c$.
- When the product of two numbers is 0 , then at least one of the numbers must be 0 .
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5 x^{2}=15 x$

$5 x^{2}=15 x$	1Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero. $5 x^{2}-15 x=0$ Do not divide both sides by x as this would lose the solution $x=0$.
So $5 x=0$ or $(x-3)=0$	$\mathbf{2}$Factorise the quadratic equation. $5 x$ is a common factor.
Therefore $x=0$ or $x=3$	When two values multiply to make zero, at least one of the values must be zero.
4Solve these two equations.	

Example 2 Solve $x^{2}+7 x+12=0$

$x^{2}+7 x+12=0$	1 Factorise the quadratic equation.
$b=7, a c=12$	Work out the two factors of $a c=12$ which add to give you $b=7$. (4 and 3)
$x^{2}+4 x+3 x+12=0$	2 Rewrite the b term ($7 x$) using these two factors.
$x(x+4)+3(x+4)=0$	3 Factorise the first two terms and the last two terms.
$(x+4)(x+3)=0$	$4(x+4)$ is a factor of both terms.
So $(x+4)=0$ or $(x+3)=0$	5 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x=-4$ or $x=-3$	6 Solve these two equations.

Example 3 Solve $9 x^{2}-16=0$

$$
\begin{aligned}
& 9 x^{2}-16=0 \\
& (3 x+4)(3 x-4)=0 \\
& \text { So }(3 x+4)=0 \text { or }(3 x-4)=0 \\
& x=-\frac{4}{3} \text { or } x=\frac{4}{3}
\end{aligned}
$$

1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3 x)^{2}$ and $(4)^{2}$.
2 When two values multiply to make zero, at least one of the values must be zero.
3 Solve these two equations.

Example 4 Solve $2 x^{2}-5 x-12=0$
$b=-5, a c=-24$
So $2 x^{2}-8 x+3 x-12=0$
$2 x(x-4)+3(x-4)=0$
$(x-4)(2 x+3)=0$
So $(x-4)=0$ or $(2 x+3)=0$
$x=4$ or $x=-\frac{3}{2}$

1 Factorise the quadratic equation.
Work out the two factors of $a c=-24$
which add to give you $b=-5$.
(-8 and 3)
2 Rewrite the b term $(-5 x)$ using these two factors.
3 Factorise the first two terms and the last two terms.
$4(x-4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Practice

1 Solve
a $\quad 6 x^{2}+4 x=0$
b $28 x^{2}-21 x=0$
c $\quad x^{2}+7 x+10=0$
d $x^{2}-5 x+6=0$
e $\quad x^{2}-3 x-4=0$
f $x^{2}+3 x-10=0$
g $\quad x^{2}-10 x+24=0$
h $\quad x^{2}-36=0$
i $\quad x^{2}+3 x-28=0$
k $\quad 2 x^{2}-7 x-4=0$
j $\quad x^{2}-6 x+9=0$
l $3 x^{2}-13 x-10=0$

2 Solve
a $\quad x^{2}-3 x=10$
b $\quad x^{2}-3=2 x$
c $\quad x^{2}+5 x=24$
d $x^{2}-42=x$
e $\quad x(x+2)=2 x+25$
f $\quad x^{2}-30=3 x-2$
g $\quad x(3 x+1)=x^{2}+15$
h $3 x(x-1)=2(x+1)$
Hint
Get all terms
onto one side
of the

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square lets you write a quadratic equation in the form $p(x+q)^{2}+r=0$.

Examples

Example 5 Solve $x^{2}+6 x+4=0$. Give your solutions in surd form.

$$
\begin{aligned}
& x^{2}+6 x+4=0 \\
& (x+3)^{2}-9+4=0 \\
& (x+3)^{2}-5=0 \\
& (x+3)^{2}=5 \\
& x+3= \pm \sqrt{5} \\
& x= \pm \sqrt{5}-3 \\
& \text { So } x=-\sqrt{5}-3 \text { or } x=\sqrt{5}-3
\end{aligned}
$$

1 Write $x^{2}+b x+c=0$ in the form $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c=0$
2 Simplify.
3 Rearrange the equation to work out x. First, add 5 to both sides.
4 Square root both sides.
Remember that the square root of a value gives two answers.
5 Subtract 3 from both sides to solve the equation.
6 Write down both solutions.

Example 6 Solve $2 x^{2}-7 x+4=0$. Give your solutions in surd form.

$$
\begin{aligned}
& 2 x^{2}-7 x+4=0 \\
& 2\left(x^{2}-\frac{7}{2} x\right)+4=0 \\
& 2\left[\left(x-\frac{7}{4}\right)^{2}-\left(\frac{7}{4}\right)^{2}\right]+4=0 \\
& 2\left(x-\frac{7}{4}\right)^{2}-\frac{49}{8}+4=0
\end{aligned}
$$

1 Before completing the square write $a x^{2}+b x+c$ in the form
$a\left(x^{2}+\frac{b}{a} x\right)+c$
2 Now complete the square by writing $x^{2}-\frac{7}{2} x$ in the form

$$
\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}
$$

3 Expand the square brackets.
\(\left.$$
\begin{array}{|l|l|}\hline 2\left(x-\frac{7}{4}\right)^{2}-\frac{17}{8}=0 & \mathbf{4} \begin{array}{l}\text { Simplify. } \\
2\left(x-\frac{7}{4}\right)^{2}=\frac{17}{8} \\
\left(x-\frac{7}{4}\right)^{2}=\frac{17}{16} \\
\text { (continued on next page) }\end{array} \\
x-\frac{7}{4}= \pm \frac{\sqrt{17}}{4} & \begin{array}{l}\text { Rearrange the equation to work out } \\
x . \text { First, add } \frac{17}{8} \text { to both sides. }\end{array} \\
x= \pm \frac{\sqrt{17}}{4}+\frac{7}{4} & \begin{array}{l}\text { Divide both sides by } 2 .\end{array}
$$

Square root both sides. Remember

that the square root of a value gives

two answers.\end{array}\right]\)| Add $\frac{7}{4}$ to both sides. |
| :--- |

Practice

3 Solve by completing the square.
a $\quad x^{2}-4 x-3=0$
b $x^{2}-10 x+4=0$
c $\quad x^{2}+8 x-5=0$
d $x^{2}-2 x-6=0$
e $2 x^{2}+8 x-5=0$
f $5 x^{2}+3 x-4=0$

4 Solve by completing the square.
a $\quad(x-4)(x+2)=5$
b $2 x^{2}+6 x-7=0$
c $x^{2}-5 x+3=0$

Hint
Get all terms
onto one side
of the

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Any quadratic equation of the form $a x^{2}+b x+c=0$ can be solved using the formula
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- If $b^{2}-4 a c$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for a, b and c.

Examples

Example 7 Solve $x^{2}+6 x+4=0$. Give your solutions in surd form.

$$
\begin{aligned}
& a=1, b=6, c=4 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-6 \pm \sqrt{6^{2}-4(1)(4)}}{2(1)} \\
& x=\frac{-6 \pm \sqrt{20}}{2} \\
& x=\frac{-6 \pm 2 \sqrt{5}}{2} \\
& x=-3 \pm \sqrt{5} \\
& \text { So } x=-3-\sqrt{5} \text { or } x=\sqrt{5}-3
\end{aligned}
$$

1 Identify a, b and c and write down the formula.
Remember that $-b \pm \sqrt{b^{2}-4 a c}$ is all over $2 a$, not just part of it.

2 Substitute $a=1, b=6, c=4$ into the formula.

3 Simplify. The denominator is 2, but this is only because $a=1$. The denominator will not always be 2 .

4 Simplify $\sqrt{20}$.
$\sqrt{20}=\sqrt{4 \times 5}=\sqrt{4} \times \sqrt{5}=2 \sqrt{5}$
5 Simplify by dividing numerator and denominator by 2 .
6 Write down both the solutions.

Example 8 Solve $3 x^{2}-7 x-2=0$. Give your solutions in surd form.

$$
\begin{aligned}
& a=3, b=-7, c=-2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(3)(-2)}}{2(3)} \\
& x=\frac{7 \pm \sqrt{73}}{6} \\
& \text { So } x=\frac{7-\sqrt{73}}{6} \text { or } x=\frac{7+\sqrt{73}}{6}
\end{aligned}
$$

1 Identify a, b and c, making sure you get the signs right and write down the formula.
Remember that $-b \pm \sqrt{b^{2}-4 a c}$ is all over $2 a$, not just part of it.

2 Substitute $a=3, b=-7, c=-2$ into the formula.

3 Simplify. The denominator is 6 when $a=3$. A common mistake is to always write a denominator of 2 .
4 Write down both the solutions.

Practice

5 Solve, giving your solutions in surd form.
a $3 x^{2}+6 x+2=0$
b $2 x^{2}-4 x-7=0$

6 Solve the equation $x^{2}-7 x+2=0$
Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers.

7 Solve $10 x^{2}+3 x+3=5$
Give your solution in surd form.

Hint

Get all terms onto one side of the equation.

Extend

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
a $\quad 4 x(x-1)=3 x-2$
b $\quad 10=(x+1)^{2}$
c $\quad x(3 x-1)=10$

Answers

1 a $x=0$ or $x=-\frac{2}{3}$
b $\quad x=0$ or $x=\frac{3}{4}$
c $\quad x=-5$ or $x=-2$
d $\quad x=2$ or $x=3$
e $\quad x=-1$ or $x=4$
f $\quad x=-5$ or $x=2$
g $\quad x=4$ or $x=6$
h $x=-6$ or $x=6$
i $\quad x=-7$ or $x=4$
j $\quad x=3$
k $\quad x=-\frac{1}{2}$ or $x=4$
l $x=-\frac{2}{3}$ or $x=5$

2 a $\quad x=-2$ or $x=5$
b $\quad x=-1$ or $x=3$
c $\quad x=-8$ or $x=3$
d $\quad x=-6$ or $x=7$
e $\quad x=-5$ or $x=5$
f $\quad x=-4$ or $x=7$
g $\quad x=-3$ or $x=2 \frac{1}{2}$
h $x=-\frac{1}{3}$ or $x=2$
$3 \quad$ a $\quad x=2+\sqrt{7}$ or $x=2-\sqrt{7}$
b $\quad x=5+\sqrt{21}$ or $x=5-\sqrt{21}$
c $\quad x=-4+\sqrt{21}$ or $x=-4-\sqrt{21}$
d $\quad x=1+\sqrt{7}$ or $x=1-\sqrt{7}$
e $\quad x=-2+\sqrt{6.5}$ or $x=-2-\sqrt{6.5}$
f $x=\frac{-3+\sqrt{89}}{10}$ or $x=\frac{-3-\sqrt{89}}{10}$
$4 \quad$ a $\quad x=1+\sqrt{14}$ or $x=1-\sqrt{14}$
b $x=\frac{-3+\sqrt{23}}{2}$ or $x=\frac{-3-\sqrt{23}}{2}$
c $x=\frac{5+\sqrt{13}}{2}$ or $x=\frac{5-\sqrt{13}}{2}$
$5 \quad$ a $\quad x=-1+\frac{\sqrt{3}}{3}$ or $x=-1-\frac{\sqrt{3}}{3}$
b $\quad x=1+\frac{3 \sqrt{2}}{2}$ or $x=1-\frac{3 \sqrt{2}}{2}$
$6 x=\frac{7+\sqrt{41}}{2}$ or $x=\frac{7-\sqrt{41}}{2}$
$7 x=\frac{-3+\sqrt{89}}{20}$ or $x=\frac{-3-\sqrt{89}}{20}$
$8 \quad \mathbf{a} \quad x=\frac{7+\sqrt{17}}{8}$ or $x=\frac{7-\sqrt{17}}{8}$
b $\quad x=-1+\sqrt{10}$ or $x=-1-\sqrt{10}$
c $\quad x=-1 \frac{2}{3}$ or $x=2$

Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- The graph of the quadratic function $y=a x^{2}+b x+c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and
 a shape as shown.
- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute $x=0$ into the function.
- To find where the curve intersects the x-axis substitute $y=0$ into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y=x^{2}$.

The graph of $y=x^{2}$ is a parabola.
When $x=0, y=0$.
$a=1$ which is greater than zero, so the graph has the shape:

Example 2 Sketch the graph of $y=x^{2}-x-6$.

When $x=0, y=0^{2}-0-6=-6$ So the graph intersects the y-axis at $(0,-6)$	$\mathbf{1}$Find where the graph intersects the y-axis by substituting $x=0$.
When $y=0, x^{2}-x-6=0$	$\mathbf{2} \quad$Find where the graph intersects the x-axis by substituting $y=0$.
$(x+2)(x-3)=0$	3Solve the equation by factorising. $x=-2$ or $x=3$ So,
$\mathbf{4} \quad$ Solve $(x+2)=0$ and $(x-3)=0$.	

the graph intersects the x-axis at $(-2,0)$ and $(3,0)$ $\begin{aligned} x^{2}-x-6 & =\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}-6 \\ & =\left(x-\frac{1}{2}\right)^{2}-\frac{25}{4} \end{aligned}$ When $\left(x-\frac{1}{2}\right)^{2}=0, x=\frac{1}{2}$ and $y=-\frac{25}{4}$, so the turning point is at the point $\left(\frac{1}{2},-\frac{25}{4}\right)$	$5 \quad a=1$ which is greater than zero, so the graph has the shape: (continued on next page) 6 To find the turning point, complete the square. 7 The turning point is the minimum value for this expression and occurs when the term in the bracket is equal to zero.

Practice

1 Sketch the graph of $y=-x^{2}$.

2 Sketch each graph, labelling where the curve crosses the axes.
a $y=(x+2)(x-1)$
b $\quad y=x(x-3)$
c $\quad y=(x+1)(x+5)$

3 Sketch each graph, labelling where the curve crosses the axes.
a $y=x^{2}-x-6$
b $\quad y=x^{2}-5 x+4$
c $\quad y=x^{2}-4$
d $y=x^{2}+4 x$
e $\quad y=9-x^{2}$
f $\quad y=x^{2}+2 x-3$

4 Sketch the graph of $y=2 x^{2}+5 x-3$, labelling where the curve crosses the axes.

Extend

5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.
a $y=x^{2}-5 x+6$
b $y=-x^{2}+7 x-12$
c $y=-x^{2}+4 x$

6 Sketch the graph of $y=x^{2}+2 x+1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

Answers

1

2 a

b

c

c

d
e
f

4

5 a

b

c

6

Line of symmetry at $x=-1$.

Q1.

$$
4 x-5-x^{2}=q-(x+p)^{2}
$$

where p and q are integers.
(a) Find the value of p and the value of q.
(b) Calculate the discriminant of $4 x-5-x^{2}$
(c) On the axes below, sketch the curve with equation $y=4 x-5-x^{2}$ showing clearly the coordinates of any points where the curve crosses the coordinate axes.

Q2.

(a) Show that $x^{2}+6 x+11$ can be written as
$(x+p)^{2}+q$
where p and q are integers to be found.
(b) In the space below, sketch the curve with equation $y=x^{2}+6 x+11$, showing clearly any intersections with the coordinate axes.
(c) Find the value of the discriminant of $x^{2}+6 x+11$

Q3.

$$
\mathrm{f}(x)=x^{2}-8 x+19
$$

(a) Express $\mathrm{f}(x)$ in the form $(x+a)^{2}+b$, where a and b are constants.

The curve C with equation $y=\mathrm{f}(x)$ crosses the y-axis at the point P and has a minimum point at the point Q.
(b) Sketch the graph of C showing the coordinates of point P and the coordinates of point Q.
(c) Find the distance $P Q$, writing your answer as a simplified surd.

Q4.

$$
4 x^{2}+8 x+3=a(x+b)^{2}+c
$$

(a) Find the values of the constants a, b and c.
(b) On the axes below, sketch the curve with equation $y=4 x^{2}+8 x+3$, showing clearly the coordinates of any points where the curve crosses the coordinate axes.

Q5. Given that

$$
\mathrm{f}(x)=x^{2}-6 x+18, \quad x \geq 0
$$

(a) express $\mathrm{f}(x)$ in the form $(x-a)^{2}+b$, where a and b are integers.

The curve C with equation $y=\mathrm{f}(x), x \geq 0$, meets the y-axis at P and has a minimum point at Q.
(b) Sketch the graph of C, showing the coordinates of P and Q.

The line $y=41$ meets C at the point R.
(c) Find the x-coordinate of R, giving your answer in the form $p+q \sqrt{ } 2$, where p and q are integers.

Q6.

$$
x^{2}-8 x-29 \equiv(x+a)^{2}+b,
$$

where a and b are constants.
(a) Find the value of a and the value of b.
(b) Hence, or otherwise, show that the roots of

$$
x^{2}-8 x-29=0
$$

are $c \pm d \sqrt{ } 5$, where c and d are integers to be found.

