Edexcel New GCE A Level Maths workbook Factorisation, Completing the square, Solving Quadratics.

Edited by: K V Kumaran

Kumarmaths.weebly.com

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is ac.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y).

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

The highest common factor is $3x^2y$. So take $3x^2y$ outside the brackets and then divide each term by $3x^2y$ to find the terms in the brackets
the terms in the brackets

Example 2 Factorise $4x^2 - 25y^2$

$(2x)^2$ and $(5y)^2$

Example 3 Factorise $x^2 + 3x - 10$

b = 3, ac = -10	1 Work out the two factors of $ac = -10$ which add to give $b = 3$
So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$	 (5 and -2) 2 Rewrite the <i>b</i> term (3<i>x</i>) using these two factors
= x(x+5) - 2(x+5)	3 Factorise the first two terms and the last two terms
= (x+5)(x-2)	4 $(x+5)$ is a factor of both terms

Example 4	Facto
-----------	-------

orise $6x^2 - 11x - 10$

1 Work out the two factors of
ac = -60 which add to give $b = -11(-15 and 4)$
2 Rewrite the <i>b</i> term $(-11x)$ using
these two factors3 Factorise the first two terms and the
last two terms 4 $(2x-5)$ is a factor of both terms

Example 5 Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$

1 Factorise the numerator and the denominator
2 Work out the two factors of ac = -21 which add to give $b = -4(-7 and 3)$
3 Rewrite the <i>b</i> term $(-4x)$ using these two factors
4 Factorise the first two terms and the last two terms
5 $(x-7)$ is a factor of both terms
6 Work out the two factors of ac = 18 which add to give $b = 9(6 and 3)$
7 Rewrite the <i>b</i> term $(9x)$ using these two factors
8 Factorise the first two terms and the last two terms
9 $(x+3)$ is a factor of both terms
10 $(x + 3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Practice

1	Fac	ctorise.		
	a	$6x^4y^3 - 10x^3y^4$	b	$21a^3b^5 + 35a^5b^2$
	c	$25x^2y^2 - 10x^3y^2 + 15x^2y^3$		
2		ctorise		
		$x^2 + 7x + 12$		$x^2 + 5x - 14$
	-	$x^2 - 11x + 30$		$x^2 - 5x - 24$
		$x^2 - 7x - 18$		$x^2 + x - 20$
	g	$x^2 - 3x - 40$	h	$x^2 + 3x - 28$
3	Fac	ctorise		
U		$36x^2 - 49y^2$	h	$4x^2 - 81y^2$
		$18a^2 - 200b^2c^2$	N,	in ory
	•	2000 0		
4	Fac	ctorise		
	a	$2x^2 + x - 3$	b	$6x^2 + 17x + 5$
	c	$2x^2 + 7x + 3$	d	$9x^2 - 15x + 4$
	e	$10x^2 + 21x + 9$	f	$12x^2 - 38x + 20$
5	Sin	nplify the algebraic fractions.		
	a	$\frac{2x^2 + 4x}{x^2 - x}$	b	$\frac{x^2 + 3x}{x^2 + 2x - 3}$
				x + 2x = 3
	c	$\frac{x^2-2x-8}{x^2-4x}$	d	$\frac{x^2-5x}{x^2-25}$
				X 25
	e	$\frac{x^2 - x - 12}{x^2 - 4x}$	f	$\frac{2x^2 + 14x}{2x^2 + 4x - 70}$
		Λ $\intercal \Lambda$		2x + 4x = 70
6	Sin	nplify		

a
$$\frac{9x^2 - 16}{3x^2 + 17x - 28}$$

b $\frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$
c $\frac{4 - 25x^2}{10x^2 - 11x - 6}$
d $\frac{6x^2 - x - 1}{2x^2 + 7x - 4}$

Extend

Simplify $\sqrt{x^2 + 10x + 25}$ 7

8 Simplify
$$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$

Hint

Take the highest common factor outside the bracket.

Kumarmaths.weebly.com 4

Answers

1	a	$2x^3y^3(3x-5y)$	b	$7a^3b^2(3b^3+5a^2)$
	c	$5x^2y^2(5-2x+3y)$		
2	a	(x+3)(x+4)	b	(x + 7)(x - 2)
	c	(x-5)(x-6)	d	(x-8)(x+3)
	e	(x-9)(x+2)		(x+5)(x-4)
	g	(x-8)(x+5)	h	(x + 7)(x - 4)
3		(6x-7y)(6x+7y)	b	(2x-9y)(2x+9y)
	c	2(3a - 10bc)(3a + 10bc)		
4		(1)(2 + 2)	Ŀ	$(2 \rightarrow 1)(2 \rightarrow 5)$
4		(x-1)(2x+3)	b	. ,. ,
		(2x+1)(x+3)		(3x-1)(3x-4)
	e	(5x+3)(2x+3)	f	2(3x-2)(2x-5)
		$2(\cdot, 2)$		
5	a	$\frac{2(x+2)}{x-1}$	b	$\frac{x}{x-1}$
	c	$\frac{x+2}{2}$	d	$\frac{x}{x+5}$
		<i>x</i>		
	e	x+3	f	$\frac{x}{x-5}$
		x		x - 5
		2r + 4		2x + 2
6	a	$\frac{3x+4}{x+7}$	b	$\frac{2x+3}{3x-2}$
	c	$\frac{2-5x}{2x-3}$	d	$\frac{3x+1}{x+4}$
		$\Delta x = 3$		$\lambda \pm 4$

$$8 \qquad \frac{4(x+2)}{x-2}$$

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

$x^2 + 6x - 2$		Write $x^2 + bx + c$ in the form
		$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$
$=(x+3)^2-11$	2	Simplify

Example 1 Complete the square for the quadratic expression $x^2 + 6x - 2$

Example 2 Write $2x^2 - 5x + 1$ in the form $p(x+q)^2 + r$

$$2x^{2} - 5x + 1$$

$$2x^{2} - 5x + 1$$

$$= 2\left(x^{2} - \frac{5}{2}x\right) + 1$$

$$= 2\left[\left(x - \frac{5}{4}\right)^{2} - \left(\frac{5}{4}\right)^{2}\right] + 1$$

$$= 2\left[\left(x - \frac{5}{4}\right)^{2} - \left(\frac{5}{4}\right)^{2}\right] + 1$$

$$= 2\left(x - \frac{5}{4}\right)^{2} - \frac{25}{8} + 1$$

$$= 2\left(x - \frac{5}{4}\right)^{2} - \frac{17}{8}$$

$$\frac{1}{8}$$
Before completing the square write $ax^{2} + bx + c$ in the form
$$a\left(x^{2} + \frac{b}{a}x\right) + c$$
2 Now complete the square by writing
$$x^{2} - \frac{5}{2}x$$
 in the form
$$\left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2}$$
3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the factor of 2
$$4$$
 Simplify

Practice

1 Write the following quadratic expressions in the form $(x + p)^2 + q$

a	$x^2 + 4x + 3$	b	$x^2 - 10x - 3$
c	$x^2 - 8x$	d	$x^2 + 6x$
e	$x^2 - 2x + 7$	f	$x^2 + 3x - 2$

2 Write the following quadratic expressions in the form $p(x+q)^2 + r$

- **a** $2x^2 8x 16$ **b** $4x^2 - 8x - 16$ **c** $3x^2 + 12x - 9$ **d** $2x^2 + 6x - 8$
- **3** Complete the square.

a	$2x^2 + 3x + 6$	b	$3x^2 - 2x$
c	$5x^2 + 3x$	d	$3x^2 + 5x + 3$

Extend

4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Answers

1	a	$(x+2)^2 - 1$	b	$(x-5)^2 - 28$
	c	$(x-4)^2 - 16$	d	$(x+3)^2 - 9$
	e	$(x-1)^2 + 6$	f	$\left(x+\frac{3}{2}\right)^2 - \frac{17}{4}$
2	a	$2(x-2)^2 - 24$	b	$4(x-1)^2 - 20$
	c	$3(x+2)^2 - 21$	d	$2\left(x+\frac{3}{2}\right)^2 - \frac{25}{2}$
3	a	$2\left(x+\frac{3}{4}\right)^2+\frac{39}{8}$	b	$3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}$
	c	$5\left(x+\frac{3}{10}\right)^2-\frac{9}{20}$	d	$3\left(x+\frac{5}{6}\right)^2+\frac{11}{12}$

4
$$(5x+3)^2+3$$

Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is *ac*.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$ $5x^2 - 15x = 0$	1 Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero. Do not divide both sides by x as this would lose the solution $x = 0$.
5x(x-3)=0	 2 Factorise the quadratic equation. 5x is a common factor.
So $5x = 0$ or $(x - 3) = 0$	3 When two values multiply to make zero, at least one of the values must
Therefore $x = 0$ or $x = 3$	be zero.4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^2 + 7x + 12 = 0$	1 Factorise the quadratic equation.
b = 7, ac = 12	Work out the two factors of $ac = 12$ which add to give you $b = 7$. (4 and 3)
$x^2 + 4x + 3x + 12 = 0$	 2 Rewrite the <i>b</i> term (7<i>x</i>) using these two factors.
x(x+4) + 3(x+4) = 0	3 Factorise the first two terms and the last two terms.
(x+4)(x+3) = 0	4 $(x+4)$ is a factor of both terms.
So $(x + 4) = 0$ or $(x + 3) = 0$	5 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.

Example 3 Solve $9x^2 - 16 = 0$

$9x^2 - 16 = 0$ (3x + 4)(3x - 4) = 0	1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3x)^2$ and $(4)^2$.
So $(3x + 4) = 0$ or $(3x - 4) = 0$ $x = -\frac{4}{3}$ or $x = \frac{4}{3}$	 2 When two values multiply to make zero, at least one of the values must be zero. 2 Solve the stress sum time.
$\begin{bmatrix} x - 3 & 0 & x - 3 \\ 3 & 3 & 3 \end{bmatrix}$	3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

b = -5, ac = -24	1 Factorise the quadratic equation. Work out the two factors of $ac = -24$ which add to give you $b = -5$. (-8 and 3)
So $2x^2 - 8x + 3x - 12 = 0$	2 Rewrite the <i>b</i> term $(-5x)$ using these two factors.
2x(x-4) + 3(x-4) = 0	3 Factorise the first two terms and the last two terms.
(x-4)(2x+3) = 0	4 $(x-4)$ is a factor of both terms.
So $(x - 4) = 0$ or $(2x + 3) = 0$	5 When two values multiply to make zero, at least one of the values must
$x = 4$ or $x = -\frac{3}{2}$	be zero.6 Solve these two equations.

Practice

1	Sol	ve		
	a	$6x^2 + 4x = 0$	b	$28x^2 - 21x = 0$
	c	$x^2 + 7x + 10 = 0$	d	$x^2 - 5x + 6 = 0$
	e	$x^2 - 3x - 4 = 0$	f	$x^2 + 3x - 10 = 0$
	g	$x^2 - 10x + 24 = 0$	h	$x^2 - 36 = 0$
	i	$x^2 + 3x - 28 = 0$	j	$x^2 - 6x + 9 = 0$
	k	$2x^2 - 7x - 4 = 0$	1	$3x^2 - 13x - 10 = 0$

a	$x^2 - 3x = 10$	b	$x^2 - 3 = 2x$	Hint	
c	$x^2 + 5x = 24$	d	$x^2 - 42 = x$		
e	x(x+2) = 2x + 25	f	$x^2 - 30 = 3x - 2$	Get all terms	
g	$x(3x+1) = x^2 + 15$	h	3x(x-1) = 2(x+1)	onto one side of the	

Kumarmaths.weebly.com 10

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$x^2 + 6x + 4 = 0$	1 Write $x^2 + bx + c = 0$ in the form
$(x+3)^2 - 9 + 4 = 0$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$
$(x+3)^2 - 5 = 0$ (x+3)^2 = 5	2 Simplify.
$(x+3)^2 = 5$	3 Rearrange the equation to work out
	x. First, add 5 to both sides.
$x+3=\pm\sqrt{5}$	4 Square root both sides.
	Remember that the square root of a
$x = \pm \sqrt{5} - 3$	value gives two answers.
$x = \pm \sqrt{5} = 5$	5 Subtract 3 from both sides to solve
	the equation.
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$	6 Write down both solutions.

Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form. **Example 6**

> $2x^2 - 7x + 4 = 0$ **1** Before completing the square write $ax^2 + bx + c$ in the form $2\left(x^2 - \frac{7}{2}x\right) + 4 = 0$ $a\left(x^2 + \frac{b}{a}x\right) + c$ $2\left[\left(x-\frac{7}{4}\right)^2-\left(\frac{7}{4}\right)^2\right]+4=0$ 2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form $\left(x+\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$ $2\left(x-\frac{7}{4}\right)^2-\frac{49}{8}+4=0$ **3** Expand the square brackets.

> > Kumarmaths.weebly.com

$$2\left(x-\frac{7}{4}\right)^{2}-\frac{17}{8}=0$$

$$2\left(x-\frac{7}{4}\right)^{2}=\frac{17}{8}$$

$$\left(x-\frac{7}{4}\right)^{2}=\frac{17}{8}$$

$$\left(x-\frac{7}{4}\right)^{2}=\frac{17}{16}$$

$$x-\frac{7}{4}=\pm\frac{\sqrt{17}}{4}$$

$$x=\pm\frac{\sqrt{17}}{4}+\frac{7}{4}$$
So $x=\frac{7}{4}-\frac{\sqrt{17}}{4}$ or $x=\frac{7}{4}+\frac{\sqrt{17}}{4}$

$$\left(x-\frac{7}{4}\right)^{2}=\frac{17}{16}$$

$$x-\frac{7}{4}=\frac{17}{4}$$

$$x=\frac{\sqrt{17}}{4}+\frac{7}{4}$$

$$x=\frac{17}{4}+\frac{\sqrt{17}}{4}$$

$$x=\frac{7}{4}+\frac{\sqrt{17}}{4}$$

Practice

3 Solve by completing the square.

a	$x^2 - 4x - 3 = 0$	b	$x^2 - 10x + 4 = 0$
c	$x^2 + 8x - 5 = 0$	d	$x^2 - 2x - 6 = 0$

- **e** $2x^2 + 8x 5 = 0$ **f** $5x^2 + 3x 4 = 0$
- 4 Solve by completing the square.

a
$$(x-4)(x+2) = 5$$

b
$$2x^2 + 6x - 7 = 0$$

c $x^2 - 5x + 3 = 0$

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

х

• Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $-b + \sqrt{b^2 - 4ac}$

$$=\frac{-b\pm\sqrt{b^2-4a}}{2a}$$

- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for *a*, *b* and *c*.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

a = 1, b = 6, c = 41 Identify *a*, *b* and *c* and write down $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2a, not just part of it. $x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$ 2 Substitute a = 1, b = 6, c = 4 into the formula. $x = \frac{-6 \pm \sqrt{20}}{2}$ **3** Simplify. The denominator is 2, but this is only because a = 1. The denominator will not always be 2. $x = \frac{-6 \pm 2\sqrt{5}}{2}$ 4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$ $x = -3 \pm \sqrt{5}$ **5** Simplify by dividing numerator and denominator by 2. So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$ **6** Write down both the solutions.

Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form. Example 8

$$a = 3, b = -7, c = -2$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
1 Identify *a*, *b* and *c*, making sure you get the signs right and write down the formula.
Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2*a*, not just part of it.

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$$
2 Substitute *a* = 3, *b* = -7, *c* = -2 into the formula.
3 Simplify. The denominator is 6 when *a* = 3. A common mistake is to always write a denominator of 2.
So $x = \frac{7 \pm \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$
4 Write down both the solutions.

Practice

- Solve, giving your solutions in surd form. 5 **b** $2x^2 - 4x - 7 = 0$ **a** $3x^2 + 6x + 2 = 0$
- Solve the equation $x^2 7x + 2 = 0$ 6 Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers.
- Solve $10x^2 + 3x + 3 = 5$ 7 Give your solution in surd form.

Hint
Get all terms onto one
side of the equation.

Extend

Choose an appropriate method to solve each quadratic equation, giving your answer in surd form 8 when necessary.

a 4x(x-1) = 3x-2

- **b** $10 = (x+1)^2$
- **c** x(3x-1) = 10

Answers

1 a
$$x = 0$$
 or $x = -\frac{2}{3}$
b $x = 0$ or $x = \frac{3}{4}$
c $x = -5$ or $x = -2$
d $x = 2$ or $x = 3$
e $x = -1$ or $x = 4$
f $x = -5$ or $x = 2$
g $x = 4$ or $x = 6$
i $x = -7$ or $x = 4$
k $x = -\frac{1}{2}$ or $x = 4$
i $x = -\frac{2}{3}$ or $x = 5$

2 **a**
$$x = -2$$
 or $x = 5$
b $x = -1$ or $x = 3$
c $x = -8$ or $x = 3$
d $x = -6$ or $x = 7$
e $x = -5$ or $x = 5$
f $x = -4$ or $x = 7$
g $x = -3$ or $x = 2\frac{1}{2}$
h $x = -\frac{1}{3}$ or $x = 2$

3 **a**
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$
b $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$
c $x = -4 + \sqrt{21}$ or $x = -4 - \sqrt{21}$
d $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$
e $x = -2 + \sqrt{6.5}$ or $x = -2 - \sqrt{6.5}$
f $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$

4 a
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$
b $x = \frac{-3 + \sqrt{23}}{2}$ or $x = \frac{-3 - \sqrt{23}}{2}$
c $x = \frac{5 + \sqrt{13}}{2}$ or $x = \frac{5 - \sqrt{13}}{2}$

5 **a**
$$x = -1 + \frac{\sqrt{5}}{3}$$
 or $x = -1 - \frac{\sqrt{5}}{3}$

$$\frac{\sqrt{3}}{3}$$
 or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

6
$$x = \frac{7 + \sqrt{41}}{2}$$
 or $x = \frac{7 - \sqrt{41}}{2}$

7
$$x = \frac{-3 + \sqrt{89}}{20}$$
 or $x = \frac{-3 - \sqrt{89}}{20}$

8 a
$$x = \frac{7 + \sqrt{17}}{8}$$
 or $x = \frac{7 - \sqrt{17}}{8}$
b $x = -1 + \sqrt{10}$ or $x = -1 - \sqrt{10}$

c $x = -1\frac{2}{3}$ or x = 2

Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- The graph of the quadratic function $y = ax^2 + bx + c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and a shape as shown.

- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute x = 0 into the function.
- To find where the curve intersects the x-axis substitute y = 0 into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y = x^2$.

Sketch the graph of $y = x^2 - x - 6$. Example 2

> When x = 0, $y = 0^2 - 0 - 6 = -6$ 1 Find where the graph intersects the So the graph intersects the *y*-axis at *y*-axis by substituting x = 0. (0, -6)When y = 0, $x^2 - x - 6 = 0$ 2 Find where the graph intersects the x-axis by substituting y = 0. (x+2)(x-3) = 0**3** Solve the equation by factorising. x = -2 or x = 34 Solve (x + 2) = 0 and (x - 3) = 0. So.

the graph intersects the x-axis at (-2, 0)
and (3, 0)
$$x^{2} - x - 6 = \left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} - 6$$
$$= \left(x - \frac{1}{2}\right)^{2} - \frac{25}{4}$$
When $\left(x - \frac{1}{2}\right)^{2} = 0$, $x = \frac{1}{2}$ and
 $y = -\frac{25}{4}$, so the turning point is at the
point $\left(\frac{1}{2}, -\frac{25}{4}\right)$
$$y = -\frac{2}{4}$$

Practice

- **1** Sketch the graph of $y = -x^2$.
- 2 Sketch each graph, labelling where the curve crosses the axes.

a
$$y = (x+2)(x-1)$$
 b $y = x(x-3)$ **c** $y = (x+1)(x+5)$

- **3** Sketch each graph, labelling where the curve crosses the axes.
 - **a** $y = x^2 x 6$ **b** $y = x^2 - 5x + 4$ **c** $y = x^2 - 4$ **d** $y = x^2 + 4x$ **e** $y = 9 - x^2$ **f** $y = x^2 + 2x - 3$
- 4 Sketch the graph of $y = 2x^2 + 5x 3$, labelling where the curve crosses the axes.

Extend

- 5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.
 - **a** $y = x^2 5x + 6$ **b** $y = -x^2 + 7x 12$ **c** $y = -x^2 + 4x$
- 6 Sketch the graph of $y = x^2 + 2x + 1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

Answers

с

Line of symmetry at x = -1.

x

4

Q1.

$$4x - 5 - x^2 = q - (x + p)^2$$

where p and q are integers.

(a) Find the value of p and the value of q.

(3)

(b) Calculate the discriminant of $4x - 5 - x^2$

(2)

(c) On the axes below, sketch the curve with equation $y = 4x - 5 - x^2$ showing clearly the coordinates of any points where the curve crosses the coordinate axes.

Q2.

(a) Show that $x^2 + 6x + 11$ can be written as

$$(x+p)^2+q$$

where p and q are integers to be found.

(2)

(b) In the space below, sketch the curve with equation $y = x^2 + 6x + 11$, showing clearly any intersections with the coordinate axes.

(2)

(2)

$$f(x) = x^2 - 8x + 19$$

(a) Express f(x) in the form $(x + a)^2 + b$, where *a* and *b* are constants.

The curve *C* with equation y = f(x) crosses the *y*-axis at the point *P* and has a minimum point at the point *Q*.

(b) Sketch the graph of C showing the coordinates of point P and the coordinates of point Q.

(3)

(2)

(c) Find the distance PQ, writing your answer as a simplified surd.

(3)

22

Q4.

$$4x^2 + 8x + 3 = a(x+b)^2 + c$$

(a) Find the values of the constants *a*, *b* and *c*.

(b) On the axes below, sketch the curve with equation $y = 4x^2 + 8x + 3$, showing clearly the coordinates of any points where the curve crosses the coordinate axes.

(4)

(3)

Q5. Given that

$$f(x) = x^2 - 6x + 18, \quad x \ge 0,$$

(a) express f(x) in the form $(x-a)^2 + b$, where a and b are integers. (3)

The curve *C* with equation y = f(x), $x \ge 0$, meets the *y*-axis at *P* and has a minimum point at *Q*.

(b) Sketch the graph of C, showing the coordinates of P and Q.

(4)

The line y = 41 meets *C* at the point *R*.

(c) Find the x-coordinate of R, giving your answer in the form $p + q\sqrt{2}$, where p and q are integers.

(5)

Q6.

$$x^2 - 8x - 29 \equiv (x+a)^2 + b,$$

where *a* and *b* are constants.

(*a*) Find the value of *a* and the value of *b*.

(3)

(b) Hence, or otherwise, show that the roots of

$$x^2 - 8x - 29 = 0$$

are $c \pm d\sqrt{5}$, where c and d are integers to be found.

(3)