Edexcel

New GCE A Level Maths workbook

 Circle.

Edited by: K V Kumaran

Finding the Midpoint of a Line

To work out the midpoint of line we need to find the halfway point

Midpoint of $\mathrm{AB}=(2,2)$

The formula for the midpoint is:-

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are 2 given points on the line
Example 1.
If $\mathrm{A}(3,7)$ and $\mathrm{B}(11,-3)$ Find the midpoint of AB

$$
\begin{aligned}
\text { Midpoint of } \mathrm{AB} & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{3+11}{2}, \frac{7+-3}{2}\right) \\
& =\left(\frac{14}{2}, \frac{4}{2}\right) \\
& =(7,2)
\end{aligned}
$$

Diameter of circles are often used in this topic because the midpoint will always be the centre of the circle. circle find the coordinates of C

$$
\begin{aligned}
& \text { Midpoint of } \mathrm{AB}= \\
&(5,9)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
&\left.\therefore 5=\frac{2+x}{2}, \frac{3+y}{2}\right) \\
& 10=2+x \text { and } \\
& \begin{aligned}
8 & =x
\end{aligned} \\
& \therefore \mathrm{C}=(5,15) 18=3+y \\
& \therefore 15=y
\end{aligned}
$$

if $x=\frac{10}{4} \quad$ then $\quad y=-x-1$

$$
\begin{aligned}
& y=-\frac{10}{4}-1 \\
& y=-3 \cdot 5
\end{aligned}
$$

\therefore The Centre of the circle is $(2.5,-3.5)$

Chords and Perpendicular Lines

- A chord is a line that passes from one side of a circle to the other but which does not pass through the centre.

- A perpendicular line always cuts at 90°. If it bisects a line then it cuts it exactly in half. It is often called a perpendicular bisector. When questions are talking about this then you need to use the equation of a normal and the midpoints.

- The perpendicular bisector of a chord always passes through the centre of a circle.

- The key to success is that you always need to draw a sketch so you know what is going on.

Example 1. The Lines $A B$ and $C D$ are chords of a circle. The line $y=3 x-11$ is the perpendicular bisector of $A B$. The line $y=-x-1$ is the perpendicular bisector of $C D$. Find the coordinates of the centre of the circle.
We know the perpendicular bisector
of a chord passes through the centre
so the centre of the circle is where the lines meet! So solve simultaneously

$$
\begin{aligned}
y & =3 x-11 \\
y & =-x-1 \\
\therefore \quad 3 x-11 & =-x-1 \\
4 x-11 & =-1 \\
4 x & =10 \\
x & =\frac{10}{4} \\
\text { if } x=\frac{10}{4} \quad \text { then } \quad y & =-x-1 \\
y & =-\frac{10}{4}-1 \\
y & =-3.5
\end{aligned}
$$

\therefore The Centre of the circle is $(2.5,-3.5)$

Distance Between Two Points

To work out the distance between two points we use Pythagoras

Midpoint of $\mathrm{AB}=(2,2)$

The formula for the distance between two points is:-

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are 2 given points on the line
Example 1.

$$
\mathrm{PQ} \text { is the diameter of a circle where } \mathrm{p}(-1,3) \text { and } \mathrm{Q}(6,-3) \text {. }
$$

Find the radius of the circle

First we need to remember that Radius $=$ half the Diameter

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\mathrm{PQ} & =\sqrt{(6--1)^{2}+(-3-3)^{2}} \\
\mathrm{PQ} & =\sqrt{\left(7^{2}+(-6)^{2}\right)} \\
\mathrm{PQ} & =\sqrt{85} \\
\text { Radius } & =\frac{\sqrt{85}}{2}
\end{aligned}
$$

Angles in a semicircle

An angle in a semicircle is always 90° when one side of the triangle is the diameter and all 3 sides sit on the circumference of the circle

Example 2. The points $A(2,6), B(5,7)$ and $C(8,-2)$ lie on a circle. Show that $A B C$ is a right angled triangle and find the area of the triangle

$$
\begin{aligned}
\text { Length } \mathrm{AB} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\mathrm{AB} & =\sqrt{(5-2)^{2}+(7-6)^{2}} \\
\mathrm{AB} & =\sqrt{3^{2}+1^{2}} \\
\mathrm{AB} & =\sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
\text { Length } \mathrm{BC} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\mathrm{BC} & =\sqrt{(8-5)^{2}+(-2-7)^{2}} \\
\mathrm{BC} & =\sqrt{3^{2}+(-9)^{2}} \\
\mathrm{BC} & =\sqrt{90}
\end{aligned}
$$

$$
\begin{aligned}
\text { Length } \mathrm{AC} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\mathrm{AC} & =\sqrt{(8-2)^{2}+(-2-6)^{2}} \\
\mathrm{AC} & =\sqrt{6^{2}+(-8)^{2}} \\
\mathrm{AC} & =\sqrt{100} \\
\mathrm{AC} & =10
\end{aligned}
$$

\therefore Using pythagoras to prove ABC is a right angled triangle

$$
\begin{aligned}
\mathrm{AC}^{2} & =A \mathrm{~B}^{2}+\mathrm{BC}^{2} \\
10^{2} & =(\sqrt{10})^{2}+(\sqrt{90})^{2} \\
100 & =10+90 \\
100 & =100
\end{aligned}
$$

This proves the triangle is a right angled triangle

Area of a triangle $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& A=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC} \\
& A=\frac{1}{2} \times \sqrt{10} \times \sqrt{90} \\
& A=\frac{1}{2} \times \sqrt{10} \times \sqrt{9} \times \sqrt{10} \\
& A=15 \text { units }^{2}
\end{aligned}
$$

Equation of a Circle

An equation of a circle is always in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$ where r is the radius and (a, b) is the centre of the circle.

Example 1.
If a circle has a radius of 7 and a centre at $(2,6)$, what is the equation of the circle?

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=r^{2} \quad \text { where } \mathrm{a}=2, \mathrm{~b}=6, \mathrm{r}=7 \\
& \therefore \quad(x-2)^{2}+(y-6)^{2}=7^{2} \\
& (x-2)^{2}+(y-6)^{2}=49
\end{aligned}
$$

The equation of the cirlce is $(x-2)^{2}+(y-6)^{2}=49$

Example 2. Given the equation $(x-2 \sqrt{3})^{2}+(y+\sqrt{7})^{2}=144$, find the radius of the centre of the circle.
$(x-a)^{2}+(y-b)^{2}=r^{2} \quad$ where $a=2 \sqrt{3}, b=-\sqrt{7}, r^{2}=144$
$\therefore \quad$ centre is $(2 \sqrt{3},-\sqrt{7})$

$$
\begin{aligned}
r^{2} & =144 \\
r & = \pm 12 \text { as radius cannot be negative we can ingnore the negative value } \\
\therefore r & =12
\end{aligned}
$$

Example 3. Prove that $(1,2)$ lies on the circumference of the circle which has the equation

$$
\begin{aligned}
(x-2)^{2}+(y+3)^{2} & =26 \quad \text { when } x=1 \quad y=2 \\
(1-2)^{2}+(2+3)^{2} & =26 \\
(-1)^{2}+(5)^{2} & =26 \\
1+25 & =26 \\
26 & =26
\end{aligned}
$$

$\therefore(1,2)$ lies on the circumference of the circle

Tangents

The angle between the tangent and a radius is 90°. A tangent only touches at one point.

This circle theorem is often used in questions as it can relate closely to perpendicular bisectors.

Example 1. The line $4 x-3 y-40=0$ touches the circle $(x-2)^{2}+(y-6)^{2}=100$ at $\mathrm{P}(10,0)$. Show that the radius at P is perpendicular to the line.

This mean the centre A is $(2,6)$

$$
\begin{aligned}
& \text { Gradient of AP }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
&=\frac{6-1}{2-10} \\
&=\frac{6}{-8} \\
& \therefore \text { gradient of AP is }-\frac{3}{4}
\end{aligned}
$$

Gradient of tangent

$$
\begin{aligned}
4 x-3 y-40 & =0 \\
4 x-40 & =3 y \\
\frac{4 x-40}{3} & =y
\end{aligned}
$$

\therefore gradient of tangent is $\frac{4}{3}$
Using $m_{1} \times m_{2}=-1$ where $m_{1}=-\frac{3}{4}$ and $m_{2}=\frac{4}{3}$

$$
-\frac{3}{4} \times \frac{4}{3}=-1
$$

$\therefore \quad$ lines are perpendicualr

Finding Points of Intersection

If you need to find where a circle meets a line then solve the two equations simultaneously.
Example 1. Find where the line $y=x+5$ meets the circle $x^{2}+(y-2)^{2}=29$
Substitute $y=x+5 \quad$ into $\quad x^{2}+(y-2)^{2}=29$

$$
x^{2}+((x+5)-2)^{2}=29
$$

$$
x^{2}+(x+3)^{2}=29
$$

$$
x^{2}+x^{2}+6 x+9=29
$$

$$
2 x^{2}+6 x-20=0
$$

$$
x^{2}+3 x-10=0
$$

$$
(x+5)(x-2)=0
$$

$$
x=-5 \quad \text { or } x=2
$$

if $x=-5 \quad y=x+5$

$$
y=-5+5
$$

$$
\begin{equation*}
y=0 \tag{-5,0}
\end{equation*}
$$

$$
\text { if } x=2 \quad \begin{align*}
y & =x+5 \\
y & =2+5 \\
y & =7 \tag{2,7}
\end{align*}
$$

So the line meets the circle at $(-5,0)$ and $(2,7)$.

If you get no solutions when you try and solve two equations then it means the lines do not meet

Q1.
A circle C has centre $(-1,7)$ and passes through the point $(0,0)$. Find an equation for C.

Q2.

The circle C has equation
$x^{2}+y^{2}+4 x-2 y-11=0$
Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the coordinates of the points where C crosses the y-axis, giving your answers as simplified surds.

Q3.

The circle C has equation
$x^{2}+y^{2}-6 x+4 y=12$
(a) Find the centre and the radius of C.

The point $P(-1,1)$ and the point $Q(7,-5)$ both lie on C.
(b) Show that $P Q$ is a diameter of C.

The point R lies on the positive y-axis and the angle $P R Q=90^{\circ}$.
(c) Find the coordinates of R.

Q4.

The points A and B have coordinates $(-2,11)$ and $(8,1)$ respectively.
Given that $A B$ is a diameter of the circle C,
(a) show that the centre of C has coordinates $(3,6)$,
(b) find an equation for C.
(c) Verify that the point $(10,7)$ lies on C.
(d) Find an equation of the tangent to C at the point (10, 7), giving your answer in the form $y=m x+c$, where m and c are constants.

Q5.

The circle C has equation

$$
x^{2}+y^{2}-10 x+6 y+30=0
$$

Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the y coordinates of the points where the circle C crosses the line with equation $x=4$, giving your answers as simplified surds.

Q6.

A circle C with centre at the point $(2,-1)$ passes through the point A at $(4,-5)$.
(a) Find an equation for the circle C.
(b) Find an equation of the tangent to the circle C at the point A, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Q7.

The circle C, with centre A, passes through the point P with coordinates $(-9,8)$ and the point Q with coordinates $(15,-10)$.

Given that $P Q$ is a diameter of the circle C,
(a) find the coordinates of A,
(b) find an equation for C.

A point R also lies on the circle C.
Given that the length of the chord $P R$ is 20 units,
(c) find the length of the shortest distance from A to the chord $P R$. Give your answer as a surd in its simplest form.

Q8.

The circle C has centre $(3,1)$ and passes through the point $P(8,3)$.
(a) Find an equation for C.
(b) Find an equation for the tangent to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Q9.

The circle C has centre $A(2,1)$ and passes through the point $B(10,7)$.
(a) Find an equation for C.

The line l_{1} is the tangent to C at the point B.
(b) Find an equation for l_{1}.

The line l_{2} is parallel to l_{1} and passes through the mid-point of $A B$.
Given that l_{2} intersects C at the points P and Q,
(c) find the length of $P Q$, giving your answer in its simplest surd form.

Q10.

The circle C has equation

$$
x^{2}+y^{2}-20 x-24 y+195=0
$$

The centre of C is at the point M.
(a) Find
(i) the coordinates of the point M,
(ii) the radius of the circle C.
N is the point with coordinates $(25,32)$.
(b) Find the length of the line $M N$.

The tangent to C at a point P on the circle passes through point N.
(c) Find the length of the line $N P$.

Q11.

Figure 2
The circle C has centre $P(7,8)$ and passes through the point $Q(10,13)$, as shown in Figure 2.
(a) Find the length $P Q$, giving your answer as an exact value.
(b) Hence write down an equation for C.

The line l is a tangent to C at the point Q, as shown in Figure 2 .
(c) Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Q12.

Figure 3
Figure 3 shows a circle C with centre Q and radius 4 and the point T which lies on C.
The tangent to C at the point T passes through the origin O and $O T=6 \sqrt{ } 5$
Given that the coordinates of Q are $(11, k)$, where k is a positive constant,
(a) find the exact value of k,
(b) find an equation for C.

Q13.

Figure 3
The points A and B lie on a circle with centre P, as shown in Figure 3.
The point A has coordinates $(1,-2)$ and the mid-point M of $A B$ has coordinates $(3,1)$. The line l passes through the points M and P.
(a) Find an equation for l.

Given that the x-coordinate of P is 6 ,
(b) use your answer to part (a) to show that the y-coordinate of P is -1 ,
(c) find an equation for the circle.

Q14.

Figure 4
The circle C has radius 5 and touches the y-axis at the point $(0,9)$, as shown in Figure 4.
(a) Write down an equation for the circle C, that is shown in Figure 4.

A line through the point $P(8,-7)$ is a tangent to the circle C at the point T.
(b) (b) Find the length of PT.

Q15.

Figure 2

The points $\mathrm{P}(-3,2), Q(9,10)$ and $R(\mathrm{a}, 4)$ lie on the circle C, as shown in Figure 2. Given that $P R$ is a diameter of C,
(a) show that $a=13$,
(b) find an equation for C.

