Edexcel New GCE A Level Maths workbook Binomial Expansion

Edited by: K V Kumaran

Binomial expansions

Binomial expansion of $(1 + x)^n$ for positive integer *n*.

Expansion of $(a + bx)^n$ may be required.

The notations n! and $\binom{n}{r}$.

Pascal's Triangle

Pascal's Triangle looks like this

			1				
		1		1			
		1	2		1		
	1	3		3		1	
1	4		6		4		1

When we expand expression such as $(x + y)^4$ we find it follows the same pattern.

Example 1. $(x + y)^4 = x^2 + 2xy + y^2$ Notice the pattern of the coefficients (1,2,1)

Example 2. $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y$ Here the coefficients are (1,3,3,1)

The key is to notice the 3 patterns:-

- 1. The coefficients follow Pascal's triangle sequence
- 2. The powers of one decrease while the other increase

3. The total power in each expression adds up to the original power in the questions

Example 3.
$$(x + y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^3y^2 + 5xy^4 + y^5$$

So now we know this:

$$(a+b)^0 = 1 Line 1$$

$$(a+b)^{1} = 1a+1b$$
 Line 2

$$(a + b)^{2} = 1a^{2} + 2ab + 1b^{2}$$
 Line 3

$$(a + b)^{3} = 1a^{3} + 3a^{2}b + 3ab^{2} + 1b^{3}$$
 Line 4

$$(a + b)^{4} = 1a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + 1b^{4}$$
 Line 5

Example 4. Expand $(2x + 3y)^3$ using Pascal's triangle

4th line is 1,3,3,1
=
$$1(2x)^{3}(3y)^{0} + 3(2x)^{2}(3y)^{1} + 3(2x)^{1}(3y)^{2} + 1(2x)^{0}(3y)^{3}$$

= $8x^{3} + (3 \times 4x^{2} \times 3y) + (3 \times 2x \times 9y^{2}) + (1 \times 27y^{3})$
= $8x^{3} + 36x^{2}y + 54xy^{2} + 27y^{3}$

Example 5. Fully expand $(1 + 3x)(1 + 2x)^3$

$$(1 + 2x)^{3} = 1(1)^{3}(2x)^{0} + 3(1)^{2}(2x)^{1} + 3(1)^{1}(2x)^{2} + 1(1)^{0}(2x)^{3}$$

= 1 + 6x + 12x^{2} + 8x^{3}
(1 + 3x)(1 + 2x)^{3} = (1 + 3x)(1 + 6x + 12x^{2} + 8x^{3})
= 1 + 6x + 12x^{2} + 8x^{3} + 3x + 18x^{2} + 36x^{3} + 24x^{4}
= 1 + 9x + 30x² + 44x³ + 24x⁴

Factorial Notation

A factorial notation looks like this $n! = n \times (n-1) \times (n-2) \dots$

Example 1. $8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$

To find the number of ways of choosing r items from a group of n items is written as

^{*n*}
$$C_r$$
 or $\binom{n}{r}$
This is calculated by $\frac{n!}{r!(n-r)!}$

Example 2.

Find ⁵
$$C_3$$

$$= \frac{5!}{2! \times 3!}$$
$$= \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 4}$$
$$= \frac{120}{2 \times 6}$$
$$= 10$$

Example 3. Find $\begin{pmatrix} 7\\4 \end{pmatrix}$ = $\frac{7!}{3! \times 4!}$ = $\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1}$

Example 4. 4 People need to sit down but 2 want to sit together. How many different combinations are there?

Using ⁿ
$$C_r = {}^4 C_2$$

= $\frac{4!}{2!2!}$
= $\frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}$
= 6

= 35

The Connection between Combination Notation and Pascal's Triangle

Look at this:-

⁴
$$C_0 = 1$$
 ⁴ $C_1 = 4$ ⁴ $C_2 = 6$ ⁴ $C_3 = 4$ ⁴ $C_4 = 1$

These values are the same as the Index 4 line

 $\therefore \quad \text{6th line would be} \qquad \begin{pmatrix} 6 \\ 0 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$

Using Factorial Notation to work out the Coefficients in the Binomial Expansion

The Binomial Expansion is:-

$$(a + b)^{n} = (a + b)(a + b)(a + b)....(a + b)$$

= $\binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + ...(n + C_{n})a^{n-n}b^{n}$
or $\binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2}...(n + C_{n})a^{n-n}b^{n}$

Example 1.

Example 2.

Use the binomial theorem to find the expansion of $(3 - 2x)^5$

$$= \begin{pmatrix} 5\\0 \end{pmatrix} 3^{5} (-2x)^{0} + \begin{pmatrix} 5\\1 \end{pmatrix} 3^{4} (-2x)^{1} + \begin{pmatrix} 5\\2 \end{pmatrix} 3^{3} (-2x)^{2} + \begin{pmatrix} 5\\3 \end{pmatrix} 3^{2} (-2x)^{3} + \begin{pmatrix} 5\\4 \end{pmatrix} 3^{1} (-2x)^{4} + \begin{pmatrix} 5\\5 \end{pmatrix} 3^{0} (-2x)^{5}$$

 $= 243 - 810x + 1080x^2 - 720x^3 + 240x^4 - 32x^5$

a) Write down the first 4 terms of the expansion $(1 - \frac{x}{10})^6$

$$= \begin{pmatrix} 6\\0 \end{pmatrix} (1)^{6} \begin{pmatrix} -\frac{x}{10} \end{pmatrix}^{0} + \begin{pmatrix} 6\\1 \end{pmatrix} (1)^{5} \begin{pmatrix} -\frac{x}{10} \end{pmatrix}^{1} + \begin{pmatrix} 6\\2 \end{pmatrix} (1)^{4} \begin{pmatrix} -\frac{x}{10} \end{pmatrix}^{2} + \begin{pmatrix} 6\\3 \end{pmatrix} (1)^{3} \begin{pmatrix} -\frac{x}{10} \end{pmatrix}^{3}$$
$$= 1 + \begin{pmatrix} 6 \times \frac{x}{10} \end{pmatrix} + \begin{pmatrix} 15 \times \frac{x^{2}}{100} \end{pmatrix} + \begin{pmatrix} 20 \times -\frac{x^{3}}{1000} \end{pmatrix}$$
$$= 1 - \frac{6x}{10} + \frac{15x^{2}}{100} - \frac{20x^{3}}{1000}$$

$$= 1 - 0.6x + 0.15x^2 - 0.02x^2$$

b) By substituting an appropriate value of x, find an approximate value to $(0.99)^6$. Use your calculator to find the degree of accuracy of your approximation.

This means we want
$$\left(1 - \frac{x}{10}\right) = 0.99$$

 $0.01 = \frac{x}{10}$
 $0.1 = x$

substitute x = 0.1 into
$$(1 - 0.6x + 0.15x^2 - 0.02x^3)$$

= 1 - (0.6 × 0.1) + (0.15 × 0.1²) - (0.02 × 0.1³)
= 1 - 0.06 + 0.0015 - 0.00002
= 0.94148

Using a calculator $0.99^6 = 0.941480149$

so approximation is accurate to 5dp as this how far the two answers are the same

Homework Questions 1 – Using Pascal's Triangle to Expand Brackets

- 1. Complete Pascal's triangle for the first 6 rows
- 2. Use pascal's triangle to find the expansions of the following a) $(x + y)^3$
 - b) $(a-b)^4$
 - c) $(1+x)^5$
- 3. Find the coefficient of x^2 in the following expansions a) $(2 - x)^5$
 - b) $(3 + 2x)^4$
 - c) $(2-2x)^3$
- 4. The coefficient of x^2 in the following expansion is 24. Find the value of y $(x + 2y)^3$
- 5. Fully expand the following $(2 + x)(1 + x)^4$

Homework Questions 2 – Factorial and Combination Notation

- 1. Find the values of these factorial notations, show your working out
- a) 7! c) <u>5!</u> 3! b) 4! d) <u>8!</u> 5! 2. Find the values of these combination notations, show your working out c) ${}^{5}C_{3}$ a) ${}^{4}C_{0}$ b) $^{7}C_{2}$ d) ${}^{6}C_{3}$ 3. Find the value of these combination notations, show your working out a) c) $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 6\\4 \end{pmatrix}$

- 4. Prove that ${}^{6}C_{4} = \begin{pmatrix} 6\\ 2 \end{pmatrix}$
- 5. Write using combination notation Line 4 of Pascal's Triangle

Homework Questions 3 – Using Factorials in the Binomial Expansion

1. Write down how many terms there will be in the following expansions

a) $(x + 3)^5$		c) $(x + 3y)^4$							
b) $(2-x)^7$		d) $(3-2x)^8$							
2. Write down the full expansions of the following, show all your working out a) $(x + 4)^4$									

b) $(2x - 3y)^3$

3. Find the first 3 terms of the expansions, show your working out

a)
$$(x + 2y)^3$$

b) $(3x - y)^5$

4. Find the coefficient of x^2 of the following expansions

a)
$$(1-x)^5$$

b) $(3-4x)^4$

5. The coefficient of x^2 in the expansion below is 1944. Find the value of a $(3 + 2ax)^4$

Homework Questions 4 – Using (1+x)ⁿ for Binomial Expansion

1. Find the first 4 terms of the following expansions using the binomial expansions

a) $(3+x)^5$

b) $(2-x)^7$

2. If x is so small that terms of x^3 and higher can be ignored, expand the following $(2x + 3)(1 + 2x)^5$

1. Find the first three terms, in ascending powers of x, of the binomial expansion of $(3 + 2x)^5$, giving each term in its simplest form.

2. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(3 - 2x)^5$, giving each term in its simplest form.

3. (a) Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1 + px)^{12}$, where p is a non-zero constant.

Given that, in the expansion of $(1 + px)^{12}$, the coefficient of x is (-q) and the coefficient of x^2 is 11q,

(b) find the value of p and the value of q.

4. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

 $(1 + px)^9$,

where *p* is a constant.

The first 3 terms are 1, 36x and qx^2 , where q is a constant.

(b) Find the value of p and the value of q.

- 5. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1-2x)^5$. Give each term in its simplest form.
 - (b) If x is small, so that x^2 and higher powers can be ignored, show that

 $(1+x)(1-2x)^5 \approx 1-9x.$

6. (a) Find the first four terms, in ascending powers of x, in the bionomial expansion of $(1 + kx)^6$, where k is a non-zero constant.

Given that, in this expansion, the coefficients of x and x^2 are equal, find

- (b) the value of k,
- (c) the coefficient of x^3 .

- 7. (a) Find the first 4 terms of the expansion of $\left(1+\frac{x}{2}\right)^{10}$ in ascending powers of x, giving each term in its simplest form.
 - (b) Use your expansion to estimate the value of $(1.005)^{10}$, giving your answer to 5 decimal places.

(a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of (1 + ax)¹⁰, where a is a non-zero constant. Give each term in its simplest form.
 Given that, in this expansion, the coefficient of x³ is double the coefficient of x²,
 (b) find the value of a.

9. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

 $(2 + kx)^7$

where k is a constant. Give each term in its simplest form.

Given that the coefficient of x^2 is 6 times the coefficient of x,

(b) find the value of k.

10. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1 + ax)^7$, where a is a constant. Give each term in its simplest form.

Given that the coefficient of x^2 in this expansion is 525,

(*b*) find the possible values of *a*.

11. Given that $\binom{40}{4} = \frac{40!}{4!b!}$,

(a) write down the value of b.

In the binomial expansion of $(1 + x)^{40}$, the coefficients of x^4 and x^5 are *p* and *q* respectively. (*b*) Find the value of $\frac{q}{p}$.

12. (a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of

$$\left(1+\frac{x}{4}\right)^8$$
,

giving each term in its simplest form.

(b) Use your expansion to estimate the value of $(1.025)^8$, giving your answer to 4 decimal places.

13. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

 $\left(2-\frac{x}{8}\right)^{10}$

giving each term in its simplest form.

f (x) =
$$\left(2 - \frac{x}{8}\right)^{10}$$
 (a + bx), where a and b are constants

Given that the first two terms, in ascending powers of x in the series expansion of f(x), are 256 and 352x,

(*b*) find the value of *a*,

(*c*) find the value of *b*.

14. The first 3 terms, in ascending powers of x, in the binomial expansion of $(1 + ax)^{20}$ are given by

$$1 + 4x + px^2$$

where a and p are constants.
(a) Find the value of a.
(b) Find the value of p.
One of the terms in the binomial expansion of (1 + ax)²⁰ is qx⁴, where q is a constant.
(c) Find the value of q.