Edexcel

Pure Mathematics

Year 1 Differentiation 1

Past paper questions from Core Maths 1 and IAL C12

Edited by: K V Kumaran

Past paper questions from

Edexcel Core Maths 1 and IAL C12.

From Jan 2005 to Oct 2019.

Differentiation 01

This Section 1 has 37 Questions on differentiations, finding the equations of the Tangent and Normal.

Please check the Edexcel website for the solutions.

1. (a) Show that $\frac{(3-\sqrt{ } x)^{2}}{\sqrt{ } x}$ can be written as $9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}}$.

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(3-\sqrt{ } x)^{2}}{\sqrt{ } x}, x>0$, and that $y=\frac{2}{3}$ at $x=1$,
(b) find y in terms of x.
2. The curve C has equation $y=\frac{1}{3} x^{3}-4 x^{2}+8 x+3$.

The point P has coordinates $(3,0)$.
(a) Show that P lies on C.
(b) Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point Q also lies on C. The tangent to C at Q is parallel to the tangent to C at P.
(c) Find the coordinates of Q.
(C1 May 2005, Q10)
3. Differentiate with respect to x
(a) $x^{4}+6 \sqrt{ } x$,
(b) $\frac{(x+4)^{2}}{x}$.
(C1 May 2006, Q5)
4. Given that

$$
y=4 x^{3}-1+2 x^{\frac{1}{2}}, \quad x>0,
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
5.

Figure 2 shows part of the curve C with equation

$$
y=(x-1)\left(x^{2}-4\right) .
$$

The curve cuts the x-axis at the points $P,(1,0)$ and Q, as shown in Figure 2.
(a) Write down the x-coordinate of P and the x-coordinate of Q.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x-4$.
(c) Show that $y=x+7$ is an equation of the tangent to C at the point $(-1,6)$.

The tangent to C at the point R is parallel to the tangent at the point $(-1,6)$.
(d) Find the exact coordinates of R.
6. The curve C has equation $y=4 x+3 x^{\frac{3}{2}}-2 x^{2}, \quad x>0$.
(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Show that the point $P(4,8)$ lies on C.
(c) Show that an equation of the normal to C at the point P is

$$
3 y=x+20 .
$$

The normal to C at P cuts the x-axis at the point Q.
(d) Find the length $P Q$, giving your answer in a simplified surd form.
(C1 Jan 2007, Q8)
7. The curve C has equation $y=x^{2}(x-6)+\frac{4}{x}, x>0$.

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the length of $P Q$ is $\sqrt{ } 170$.
(b) Show that the tangents to C at P and Q are parallel.
(c) Find an equation for the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(C1 May 2007, Q10)
8. (a) Write $\frac{2 \sqrt{ } x+3}{x}$ in the form $2 x^{p}+3 x^{q}$, where p and q are constants.

Given that $y=5 x-7+\frac{2 \sqrt{ } x+3}{x}, x>0$,
(b) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying the coefficient of each term.
(C1 Jan 2008, Q5)
9. The curve C has equation

$$
y=(x+3)(x-1)^{2} .
$$

(a) Sketch C, showing clearly the coordinates of the points where the curve meets the coordinate axes.
(b) Show that the equation of C can be written in the form

$$
y=x^{3}+x^{2}-5 x+k
$$

where k is a positive integer, and state the value of k.

There are two points on C where the gradient of the tangent to C is equal to 3 .
(c) Find the x-coordinates of these two points.
(C1 Jan 2008, Q10)
10.

$$
\mathrm{f}(x)=3 x+x^{3}, \quad x>0
$$

(a) Differentiate to find $\mathrm{f}^{\prime}(x)$.

Given that $\mathrm{f}^{\prime}(x)=15$,
(b) find the value of x.
(C1 June 2008, Q4)
11. The curve C has equation $y=k x^{3}-x^{2}+x-5$, where k is a constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

The point A with x-coordinate $-\frac{1}{2}$ lies on C. The tangent to C at A is parallel to the line with equation $2 y-7 x+1=0$.

Find
(b) the value of k,
(c) the value of the y-coordinate of A.
(C1 June 2008, Q9)
12. Given that $\frac{2 x^{2}-x^{\frac{3}{2}}}{\sqrt{ } x}$ can be written in the form $2 x^{p}-x^{q}$,
(a) write down the value of p and the value of q.

Given that $y=5 x^{4}-3+\frac{2 x^{2}-x^{\frac{3}{2}}}{\sqrt{ } x}$,
(b) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying the coefficient of each term.
13. Given that $y=x^{4}+x^{\frac{1}{3}}+3$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
14. The curve C has equation

$$
y=9-4 x-\frac{8}{x}, \quad x>0 .
$$

The point P on C has x-coordinate equal to 2 .
(a) Show that the equation of the tangent to C at the point P is $y=1-2 x$.
(b) Find an equation of the normal to C at the point P.

The tangent at P meets the x-axis at A and the normal at P meets the x-axis at B.
(c) Find the area of the triangle $A P B$.
(C1 Jan 2009, Q11)
15.

$$
\mathrm{f}(x)=\frac{(3-4 \sqrt{ } x)^{2}}{\sqrt{ } x}, \quad x>0
$$

(a) Show that $\mathrm{f}(x)=9 x^{-\frac{1}{2}}+A x^{\frac{1}{2}}+B$, where A and B are constants to be found.
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Evaluate $\mathrm{f}^{\prime}(9)$.
(C1 June 2009, Q9)
16. The curve C has equation

$$
y=x^{3}-2 x^{2}-x+9, \quad x>0
$$

The point P has coordinates $(2,7)$.
(a) Show that P lies on C.
(b) Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.

The point Q also lies on C.

Given that the tangent to C at Q is perpendicular to the tangent to C at P,
(c) show that the x-coordinate of Q is $\frac{1}{3}(2+\sqrt{ } 6)$.
17. The curve C has equation

$$
y=\frac{(x+3)(x-8)}{x}, x>0 .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form.
(b) Find an equation of the tangent to C at the point where $x=2$.
(C1 Jan 2010, Q6)
18. Given that

$$
y=8 x^{3}-4 \sqrt{ } x+\frac{3 x^{2}+2}{x}, \quad x>0
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(C1 May 2010, Q7)
19. The curve C has equation

$$
y=\frac{1}{2} x^{3}-9 x^{\frac{3}{2}}+\frac{8}{x}+30, \quad x>0 .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Show that the point $P(4,-8)$ lies on C.
(c) Find an equation of the normal to C at the point P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(C1 Jan 2011, Q11)
20. The curve C has equation

$$
\begin{equation*}
y=(x+1)(x+3)^{2} . \tag{4}
\end{equation*}
$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15$.

The point A, with x-coordinate -5 , lies on C.
(c) Find the equation of the tangent to C at A, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point B also lies on C. The tangents to C at A and B are parallel.
(d) Find the x-coordinate of B.
21. The curve C_{1} has equation

$$
y=x^{2}(x+2) .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Sketch C_{1}, showing the coordinates of the points where C_{1} meets the x-axis.
(c) Find the gradient of C_{1} at each point where C_{1} meets the x-axis.

The curve C_{2} has equation

$$
y=(x-k)^{2}(x-k+2),
$$

where k is a constant and $k>2$.
(d) Sketch C_{2}, showing the coordinates of the points where C_{2} meets the x and y axes.
(C1 Jan 2012, Q8)
22. The curve C has equation

$$
y=2 x-8 \sqrt{ } x+5, \quad x \geq 0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving each term in its simplest form.

The point P on C has x-coordinate equal to $\frac{1}{4}$.
(b) Find the equation of the tangent to C at the point P, giving your answer in the form $y=a x+b$, where a and b are constants.

The tangent to C at the point Q is parallel to the line with equation $2 x-3 y+18=0$.
(c) Find the coordinates of Q.
(C1 Jan 2013, Q11)
23.

$$
y=5 x^{3}-6 x^{\frac{4}{3}}+2 x-3
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving each term in its simplest form.
(b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
24.

Figure 2
Figure 2 shows a sketch of the curve C with equation

$$
y=2-\frac{1}{x}, \quad x \neq 0 .
$$

The curve crosses the x-axis at the point A.
(a) Find the coordinates of A.
(b) Show that the equation of the normal to C at A can be written as

$$
\begin{equation*}
2 x+8 y-1=0 . \tag{6}
\end{equation*}
$$

The normal to C at A meets C again at the point B, as shown in Figure 2 .
(c) Find the coordinates of B.
25. Given $y=x^{3}+4 x+1$, find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=3$.
26.

Figure 2
Figure 2 shows a sketch of the curve H with equation $y=\frac{3}{x}+4, x \neq 0$.
(a) Give the coordinates of the point where H crosses the x-axis.
(b) Give the equations of the asymptotes to H.
(c) Find an equation for the normal to H at the point $P(-3,3)$.

This normal crosses the x-axis at A and the y-axis at B.
(d) Find the length of the line segment $A B$. Give your answer as a surd.
27. The curve C has equation

$$
y=\frac{\left(x^{2}+4\right)(x-3)}{2 x}, x \neq 0 .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form.
(b) Find an equation of the tangent to C at the point where $x=-1$.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(C1 May 2015, Q6)
28.

A sketch of part of the curve C with equation

$$
y=20-4 x-\frac{18}{x}, \quad x>0
$$

is shown in Figure 3.
Point A lies on C and has an x coordinate equal to 2 .
(a) Show that the equation of the normal to C at A is $y=-2 x+7$.

The normal to C at A meets C again at the point B, as shown in Figure 3 .
(b) Use algebra to find the coordinates of B.
29. Differentiate with respect to x, giving each answer in its simplest form,
(a) $(1-2 x)^{2}$,
(b) $\frac{x^{5}+6 \sqrt{x}}{2 x^{2}}$.
30. Given that

$$
y=3 x^{2}+6 x^{\frac{1}{3}}+\frac{2 x^{3}-7}{3 \sqrt{x}}, \quad x>0
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Give each term in your answer in its simplified form.
31. The curve C has equation $y=2 x^{3}+k x^{2}+5 x+6$, where k is a constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

The point P, where $x=-2$, lies on C.
The tangent to C at the point P is parallel to the line with equation $2 y-17 x-1=0$.
Find
(b) the value of k,
(c) the value of the y coordinate of P,
(d) the equation of the tangent to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(C1 May 2016, Q11)
32. Given

$$
y=\sqrt{x}+\frac{4}{\sqrt{x}}+4, \quad x>0
$$

find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=8$, writing your answer in the form $a \sqrt{2}$, where a is a rational number.
(C1 May 2017, Q2)
33. Given

$$
y=3 \sqrt{x}-6 x+4, \quad x>0
$$

(a) find $y \mathrm{~d} x$, simplifying each term.
(b) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(ii) Hence find the value of x such that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
(C1 May 2018, Q2)
34.

Figure 2

Figure 2 shows a sketch of part of the curve $y=\mathrm{f}(x), x \in \mathbb{R}$, where

$$
f(x)=(2 x-5)^{2}(x+3)
$$

(a) Given that
(i) the curve with equation $y=\mathrm{f}(x)-k, x \in \mathbb{R}$, passes through the origin, find the value of the constant k,
(ii) the curve with equation $y=\mathrm{f}(x+c), x \in \mathbb{R}$, has a minimum point at the origin, find the value of the constant c.
(b) Show that $\mathrm{f}^{\prime}(x)=12 x^{2}-16 x-35$

Points A and B are distinct points that lie on the curve $y=\mathrm{f}(x)$.
The gradient of the curve at A is equal to the gradient of the curve at B.
Given that point A has x coordinate 3
(c) find the x coordinate of point B.
(C1 May 2017, Q10)
35.

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$
y=\frac{1}{2} x+\frac{27}{x}-12, \quad x>0
$$

The point A lies on C and has coordinates $\left(3,-\frac{3}{2}\right)$.
(a) Show that the equation of the normal to C at A can be written as $10 y=4 x-27$

The normal to C at A meets C again at the point B, as shown in Figure 3 .
(b) Use algebra to find the coordinates of B.
(C1 May 2018, Q10)
36.

It is given that

$$
y=15 x+108 x^{\frac{1}{2}}+4 x^{\frac{5}{2}} \quad x>0
$$

Find, in simplest form,
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
(c) Find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=9$
37.

Figure 1
Figure 1 shows a sketch of part of the curve H with equation

$$
y=\frac{12}{x}+5 \quad x \neq 0
$$

(a) Find an equation for the normal to H at the point $A(-2,-1)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The points B and C also lie on the curve H.
The normal to H at the point B and the normal to H at the point C are each parallel to the straight line with equation $4 y=3 x+5$
(b) Find the coordinates of the points B and C, given that the x coordinate of B is positive.
(5)
(C1 May 2019, Q9)

