
Edexcel Pure Mathematics Year 2

Binomial Expansions.

Edited by: K V Kumaran

1. Use the binomial theorem to expand

$$\sqrt{(4-9x)}, \qquad |x| < \frac{4}{9},$$

in ascending powers of x, up to and including the term in x^3 , simplifying each term.

(C4 June 2005 Q1)

(5)

(4)

$$f(x) = \frac{3x^2 + 16}{(1 - 3x)(2 + x)^2} = \frac{A}{(1 - 3x)} + \frac{B}{(2 + x)} + \frac{C}{(2 + x)^2}, \quad |x| < \frac{1}{3}.$$

- (a) Find the values of A and C and show that B = 0.
- (b) Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the term in x^3 . Simplify each term. (7)
 - (C4 Jan 2006 Q5)

2.

$$f(x) = \frac{3x-1}{(1-2x)^2}, \quad |x| < \frac{1}{2}.$$

Given that, for $x \neq \frac{1}{2}$, $\frac{3x-1}{(1-2x)^2} = \frac{A}{(1-2x)} + \frac{B}{(1-2x)^2}$, where A and B are constants,

- (*a*) find the values of *A* and *B*.
- (b) Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the term in x^3 , simplifying each term. (6)

(C4 June 2006 Q2)

$$f(x) = (2-5x)^{-2}, |x| < \frac{2}{5}.$$

Find the binomial expansion of f(x), in ascending powers of x, as far as the term in x^3 , giving each coefficient as a simplified fraction. (5)

(C4 Jan 2007 Q1)

5.

4.

$$f(x) = (3 + 2x)^{-3}, |x| < \frac{3}{2}.$$

Find the binomial expansion of f(x), in ascending powers of x, as far as the term in x^3 .

Give each coefficient as a simplified fraction.

(C4 June 2007 Q1)

(5)

(3)

6. (a) Use the binomial theorem to expand

$$(8-3x)^{\frac{1}{3}}, \qquad |x| < \frac{8}{3},$$

in ascending powers of x, up to and including the term in x^3 , giving each term as a simplified fraction. (5)

(*b*) Use your expansion, with a suitable value of *x*, to obtain an approximation to $\sqrt[3]{(7.7)}$. Give your answer to 7 decimal places. (2)

(C4 Jan 2008 Q2)

- 7. (a) Expand $\frac{1}{\sqrt{(4-3x)}}$, where $|x| < \frac{4}{3}$, in ascending powers of x up to and including the term in x^2 . Simplify each term. (5)
 - (b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{(4-3x)}}$ as a series in ascending powers of x. (4)

(C4 June 2008 Q5)

$$f(x) = \frac{27x^2 + 32x + 16}{(3x+2)^2(1-x)}, \quad |x| < \frac{2}{3}.$$

Given that f(x) can be expressed in the form

$$f(x) = \frac{A}{(3x+2)} + \frac{B}{(3x+2)^2} + \frac{C}{(1-x)}$$

- (a) find the values of B and C and show that A = 0.
- (b) Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the term in x^2 . Simplify each term. (6)
- (c) Find the percentage error made in using the series expansion in part (b) to estimate the value of f(0.2). Give your answer to 2 significant figures.(4)

(C4 Jan 2009 Q3)

$$f(x) = \frac{1}{\sqrt{(4+x)}}, \quad |x| < 4.$$

Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction. (6)

(C4 June 2009 Q1)

kumarmaths.weebly.com 3

9.

8.

(4)

10. (*a*) Find the binomial expansion of

$$\sqrt{(1-8x)}, \quad |x| < \frac{1}{8},$$

in ascending powers of x up to and including the term in x^3 , simplifying each term. (6)

(b) Show that, when
$$x = \frac{1}{100}$$
, the exact value of $\sqrt{(1-8x)}$ is $\frac{\sqrt{23}}{5}$. (2)

(c) Substitute $x = \frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{23}$. Give your answer to 5 decimal places. (3)

(C4 Jan 2010 Q1)

(4)

11.
$$\frac{2x^2 + 5x - 10}{(x-1)(x+2)} \equiv A + \frac{B}{x-1} + \frac{C}{x+2}$$

- (a) Find the values of the constants A, B and C.
- (b) Hence, or otherwise, expand $\frac{2x^2 + 5x 10}{(x-1)(x+2)}$ in ascending powers of x, as far as the term in x^2 . Give each coefficient as a simplified fraction. (7)

(C4 June 2010 Q5)

12. (a) Use the binomial theorem to expand

$$(2-3x)^{-2}, |x| < \frac{2}{3},$$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction. (5)

$$f(x) = \frac{a+bx}{(2-3x)^2}$$
, $|x| < \frac{2}{3}$, where *a* and *b* are constants.

In the binomial expansion of f(x), in ascending powers of x, the coefficient of x is 0 and the coefficient of x^2 is $\frac{9}{16}$.

- (b) the value of a and the value of b, (5)
- (c) the coefficient of x^3 , giving your answer as a simplified fraction. (3)

(C4 Jan 2011 Q5)

13.
$$f(x) = \frac{1}{\sqrt{9+4x^2}}, \quad |x| < \frac{3}{2}.$$

Find the first three non-zero terms of the binomial expansion of f(x) in ascending powers of x. Give each coefficient as a simplified fraction. (6)

(C4 June 2011 Q2)

(5)

14. (*a*) Expand

$$\frac{1}{(2-5x)^2}, \quad |x| < \frac{2}{5},$$

in ascending powers of x, up to and including the term in x^2 , giving each term as a simplified fraction.

Given that the binomial expansion of $\frac{2+kx}{(2-5x)^2}$, $|x| < \frac{2}{5}$, is

$$\frac{1}{2}+\frac{7}{4}x+Ax^2+\ldots$$

(*b*) find the value of the constant *k*,

(c) find the value of the constant A.

(C4 Jan 2012 Q3)

15.

$$f(x) = \frac{6}{\sqrt{(9-4x)}}, \qquad |x| < \frac{9}{4}.$$

(a) Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3 . Give each coefficient in its simplest form. (6)

Use your answer to part (*a*) to find the binomial expansion in ascending powers of *x*, up to and including the term in x^3 , of

(b)
$$g(x) = \frac{6}{\sqrt{(9+4x)}}, \qquad |x| < \frac{9}{4},$$
 (1)

(c)
$$h(x) = \frac{6}{\sqrt{(9-8x)}}, \qquad |x| < \frac{9}{8}.$$
 (2)

(C4 June 2012 Q3)

(2)

(2)

$$f(x) = (2 + 3x)^{-3}, \quad |x| < \frac{2}{3},$$

find the binomial expansion of f(x), in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

(5)

(6)

17. (a) Use the binomial expansion to show that

$$\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1 + x + \frac{1}{2}x^2, \qquad |x| < 1$$

(b) Substitute $x = \frac{1}{26}$ into

$$\sqrt{\left(\frac{1+x}{1-x}\right)} = 1 + x + \frac{1}{2}x^2$$

to obtain an approximation to $\sqrt{3}$.

Give your answer in the form $\frac{a}{b}$ where *a* and *b* are integers.

(3)

(C4 June 2013 Q2)

18. (*a*) Find the binomial expansion of

$$\sqrt[3]{(8-9x)}, \qquad |x| < \frac{8}{9}$$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

(6)

(b) Use your expansion to estimate an approximate value for $\sqrt[3]{7100}$, giving your answer to 4 decimal places. State the value of *x*, which you use in your expansion, and show all your working.

(C4 June 2013_R Q4)

19. Given that the binomial expansion of $(1 + kx)^{-4}$, |kx| < 1, is

 $1 - 6x + Ax^2 + \dots$

- (a) find the value of the constant k,
- (b) find the value of the constant A, giving your answer in its simplest form.
 - (C4 June 2014 Q2)

20. (*a*) Find the binomial expansion of

$$\frac{1}{\sqrt{9-10x}}, \qquad |x| < \frac{9}{10}$$

in ascending powers of x up to and including the term in x^2 . Give each coefficient as a simplified fraction.

(b) Hence, or otherwise, find the expansion of

$$\frac{3+x}{\sqrt{9-10x}}, \qquad |x| < \frac{9}{10}$$

in ascending powers of x, up to and including the term in x^2 .

Give each coefficient as a simplified fraction.

(C4 June 2014_R Q1)

21. (*a*) Find the binomial expansion of

$$(4+5x)^{\frac{1}{2}}, \quad |x| < \frac{4}{5},$$

in ascending powers of x, up to and including the term in x^2 .

Give each coefficient in its simplest form.

(b) Find the exact value of $(4+5x)^{\frac{1}{2}}$ when $x = \frac{1}{10}$.

Give your answer in the form $k \sqrt{2}$, where k is a constant to be determined. (1)

(c) Substitute $x = \frac{1}{10}$ into your binomial expansion from part (a) and hence find an approximate value for $\sqrt{2}$. Give your answer in the form $\frac{p}{q}$, where p and q are integers. (2)

(C4 June 2015 Q1)

kumarmaths.weebly.com 7

(5)

(3)

(5)

(2) (3)

22. Use the binomial series to find the expansion of

$$\frac{1}{(2+5x)^3}, \quad |x| < \frac{2}{5},$$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a fraction in its simplest form.

(6)

23.

 $f(x) = (2 + kx)^{-3}$, |kx| < 2, where k is a positive constant

The binomial expansion of f(x), in ascending powers of x, up to and including the term in x^2 is

$$A + Bx + \frac{243}{16}x^2$$

where A and B are constants.(a) Write down the value of A.

- (1)
- (b) Find the value of k. (3)
- (c) Find the value of B.

(2) (C4 June 2017 Q2)

(7)

(2)

24. Given that the binomial expansion, in ascending powers of *x*, of

$$\frac{6}{\sqrt{9+Ax^2}}, \qquad |x| < \frac{3}{\sqrt{|A|}}$$

is
$$B - \frac{2}{3}x^2 + Cx^4 + \dots$$

- (*a*) find the values of the constants *A*, *B* and *C*.
- (b) Hence find the coefficient of x^6 .

$$f(x) = \left(8 + 27x^3\right)^{\frac{1}{3}}, \qquad |x| < \frac{2}{3}$$

Find the first three non-zero terms of the binomial expansion of f(x) in ascending powers of x. Give each coefficient as a simplified fraction. (5)

(IAL, C34 June 2014 Q5)

(IAL, C34 Jan 2014 Q6)

kumarmaths.weebly.com 8

25.

26. (a) Use the binomial expansion, in ascending powers of x, of $\frac{1}{\sqrt{(1-2x)}}$ to show that

$$\frac{2+3x}{\sqrt{(1-2x)}} \approx 2+5x+6x^2, \qquad |x|<0.5$$
 (4)

(b) Substitute $x = \frac{1}{20}$ into

 $\frac{2+3x}{\sqrt{(1-2x)}} = 2+5x+6x^2$

to obtain an approximation to $\sqrt{10}$.

Give your answer as a fraction in its simplest form.

(IAL, C34 Jan 2015 Q5)

27. Given that

$$\frac{4(x^2+6)}{(1-2x)(2+x)^2} \equiv \frac{A}{(1-2x)} + \frac{B}{(2+x)} + \frac{C}{(2+x)^2}$$

(a) find the values of the constants A and C and show that B = 0.

(b) Hence, or otherwise, find the series expansion of

$$\frac{4(x^2+6)}{(1-2x)(2+x)^2} \qquad |x| < \frac{1}{2}$$

in ascending powers of x, up to and including the term in x^2 , simplifying each term. (5)

(IAL, C34 June 2015 Q2)

$$f(x) = (3 - 2x)^{-4}, \qquad |x| < \frac{3}{2}$$

Find the binomial expansion of f(x), in ascending powers of x, up to and including the

term in x^2 , giving each coefficient as a simplified fraction.

(IAL, C34 Jan 2016 Q1)

(4)

(3)

29. (*a*) Find the binomial expansion of

 $(1 + ax)^{-3}, \qquad |ax| < 1$

in ascending powers of x, up to and including the term in x^3 , giving each coefficient as simply as possible in terms of the constant a.

$$f(x) = \frac{2+3x}{(1+ax)^3}, \qquad |ax| < 1$$

In the series expansion of f(x), the coefficient of x^2 is 3

Given that $\alpha < 0$

- (*b*) find the value of the constant *a*,
- (c) find the coefficient of x^3 in the series expansion of f(x), giving your answer as a simplified fraction.

30. (a) Express
$$\frac{9+11x}{(1-x)(3+2x)}$$
 in partial fractions.

(b) Hence, or otherwise, find the series expansion of

$$\frac{9+11x}{(1-x)(3+2x)}$$
, $|x| < 1$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

(6) (IAL, C34 Jan 2017 Q3)

31.

$$f(x) = \frac{27}{(3-5x)^2} \qquad |x| < \frac{3}{5}$$

(a) Find the series expansion of f(x), in ascending powers of x, up to and including the term in x^3 . Give each coefficient in its simplest form.

Use your answer to part (a) to find the series expansion in ascending powers of x, up to and including the term in
$$x^3$$
, of

(b)
$$g(x) = \frac{27}{(3+5x)^2}$$
 $|x| < \frac{3}{5}$

(c)
$$h(x) = \frac{27}{(3-x)^2}$$
 $|x| < 3$

(IAL, C34 June 2017 Q4)

kumarmaths.weebly.com 10

(5)

(1)

(2)

(3)

(4)

(2)

(3)

32. (a) Find the binomial series expansion of

$$\sqrt{4-9x}\,,\qquad |x|<\frac{4}{9}$$

in ascending powers of x, up to and including the term in x^2 Give each coefficient in its simplest form.

(b) Use the expansion from part (a), with a suitable value of x, to find an approximate value for $\sqrt{310}$

Show all your working and give your answer to 3 decimal places.

(3)

(2)

(2)

(5)

(C4 June 2018 Q1)

33. The binomial series expansion of

$$(1+ax)^{\frac{2}{3}}$$
 $|ax|<1$

up to and including the term in x^2 is

$$1 + \frac{1}{2}x + kx^2$$

where *a* and *k* are constants.

(*a*) Find the value of *a*.

34.

(b) Find the value of k, giving your answer in its simplest form.

(c) Hence find the numerical coefficient of x^2 in the series expansion of

$$(4-9x)(1+ax)^{\frac{2}{3}}$$
 $|ax|<1$

(2)

(C4 June 2019 Q1)

$$f(x) = (125 - 5x)^{\frac{2}{3}} \qquad |x| < 25$$

(*a*) Find the binomial expansion of f(x), in ascending powers of *x*, up to and including the term in x^2 , giving the coefficient of *x* and the coefficient of x^2 as simplified fractions.

(4)

(b) Use your expansion to find an approximate value for $120^{\overline{3}}$, stating the value of x which you have used and showing your working. Give your answer to 5 decimal places.

(3)

(IAL, C34 Jan 2018 Q2)

35. (*a*) Use the binomial series to expand

$$\frac{1}{\left(2-3x\right)^3} \qquad \left|x\right| < \frac{2}{3}$$

in ascending powers of x, up to and including the term in x^2 , giving each term as a simplified fraction.

f (x) =
$$\frac{4+kx}{(2-3x)^3}$$
 where k is a constant and $|x| < \frac{2}{3}$

Given that the series expansion of f(x), in ascending powers of x, is

$$\frac{1}{2} + Ax + \frac{81}{16}x^2 + \dots$$

where A is a constant,

- (*b*) find the value of *k*,
- (c) find the value of A.

(a) Find the binomial expansion of $(1 + nr)^{-4}$

$$(1 + px)^{-4}, \qquad |px| < 1$$

in ascending powers of x, up to and including the term in x^3 , giving each coefficient as simply as possible in terms of the constant p.

$$f(x) = \frac{3+4x}{(1+px)^4} \qquad |px| < 1$$

where *p* is a positive constant.

In the series expansion of f(x), the coefficient of x^2 is twice the coefficient of x.

- (*b*) Find the value of p.
- (c) Hence find the coefficient of x^3 in the series expansion of f (x), giving your answer as a simplified fraction.

(2) (IAL, C34 June 2018 Q4)

37. Given that

36.

$$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \circ A + \frac{B}{x+1} + \frac{C}{x-3}$$

- (*a*) find the values of the constants *A*, *B* and *C*.
- (b) Hence, or otherwise, find the series expansion of

(2)

(5)

(2) (IAL, C34 Oct 2017 Q7)

(3)

(4)

$$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \qquad |x| < 1$$

in ascending powers of x, up to and including the term in x^2 Give each coefficient as a simplified fraction.

(6)

(1)

38. (*a*) Use binomial expansions to show that, for $|x| < \frac{1}{2}$

$$\sqrt{\frac{1+2x}{1-x}} \gg 1 + \frac{3}{2}x + \frac{3}{8}x^2$$
(6)

(b) Find the exact value of
$$\sqrt{\frac{1+2x}{1-x}}$$
 when $x = \frac{1}{10}$
Give your answer in the form $k\sqrt{3}$, where k is a constant to be determined.

(c) Substitute $x = \frac{1}{10}$ into the expansion given in part (a) and hence find an approximate value for $\sqrt{3}$ Give your answer in the form $\frac{a}{b}$ where a and b are integers.

(2) (IAL, C34 Oct 2018 Q6)

39. (*a*) Use the binomial series to find the expansion of

$$\frac{1}{\left(2+3x\right)^3} \quad |x| < \frac{2}{3}$$

in ascending powers of x, up to and including the term in x^2 , giving each term as a simplified fraction.

(5)

- (b) Hence or otherwise, find the coefficient of x^2 in the series expansion of
 - (i) $\frac{1}{(2+6x)^3}$ $|x| < \frac{1}{3}$

(ii)
$$\frac{4-x}{(2+3x)^3}$$
 $|x| < \frac{2}{3}$

(4)

(IAL, C34 June 2019 Q10)

$$f(x) = \left(\frac{1}{3} - x\right)^{-2} \qquad |x| < \frac{1}{3}$$

(*a*) Find the binomial expansion of f(x), in ascending powers of *x*, up to and including the term in x^3 , giving each coefficient in its simplest form.

$$g(x) = \left(\frac{1}{3} - x\right)^{-2} (a + bx) \qquad |x| < \frac{1}{3}$$

where *a* and *b* are constants.

Given that, in the series expansion of g(x), the coefficient of x is 3 and the coefficient of x^2 is 27

(*b*) find the value of *a* and the value of *b*.

(3)

(4)

(c) Hence find the coefficient of x^3 in the series expansion of g(x).

(2)

(IAL, C34 Nov 2019 Q2)